The ISC Int'l Journal of
Information Security

January 2016, Volume 8, Number 1 (pp. 39-52)

http://www.isecure-journal.org

Aggrandizing the Beast’s Limbs: Patulous Code Reuse Attack on

ARM Architecture”

Farzane Aminmansour *, and Hamid Reza Shahriari!

1 Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran

ARTICLE INFO.

ABSTRACT

Article history:

Received: 6 October 2015

First Revised: 18 December 2015
Last Revised: 12 January 2016
Accepted: 16 January 2016
Published Online: 23 January 2016

Keywords:

Code Reuse Attack, ARM
Architecture, Android, Return
Oriented Programming.

1 Introduction

I t goes without saying that applications and pro-

Since smartphones are usually personal devices full of private information,
they are a popular target for a vast variety of real-world attacks such as
Code Reuse Attack (CRA). CRAs enable attackers to execute any arbitrary
algorithm on a device without injecting an executable code. Since the standard
platform for mobile devices is ARM architecture, we concentrate on available
ARM-based CRAs. Currently, three types of CRAs are proposed on ARM
architecture including Return2ZP, ROP, and BLX-attack, in accordance to
three sub-models available on X86 Ret2Libc, ROP, and JOP. In this paper, we
have considered some unique aspects of ARM architecture to provide a general
model for code reuse attacks called Patulous Code Reuse Attack (PCRA). Our
attack applies all available machine instructions that change Program Counter
(PC), as well as direct or indirect branches in order to deploy the principles of
CRA convention. We have demonstrated the effectiveness of our approach by
defining five different sub-models of PCRA, explaining the algorithm of finding
PCRA gadgets, introducing a useful set of gadgets, and providing a sample
proof of concept exploit on Android 4.4 platform.

© 2016 ISC. All rights reserved.

Address Space Layout Randomization (ASLR) ran-
domizes where various areas of memory (e.g. stack,
heap, libs, etc.) are mapped, in the address space of

grams are replete with different bugs and failures,
which might increase serious problems later. Specif-
ically, memory corruption errors allow attackers to
subvert program control flow to another unintended
path. Nowadays, control flow vulnerabilities are not
sufficient for a would-be attacker to execute any ar-
bitrary code on a remote machine due to availability
of different countermeasures such as NX-bit [1] and

ASLR [2].

v This article is an extended version of an ISCISC’2015.
* Corresponding author.

Email addresses: fr.aminmansourQaut.ac.ir (F.
Aminmansour), shahriari@aut.ac.ir (H. R. Shahriari)

ISSN: 2008-2045 (©) 2016 ISC. All rights reserved.

a process. This mitigation technique was provided in
Android Ice Cream Sandwich 4.0 for the first time. In
fact, ASLR is primarily provided by the Linux ker-
nel, which can be applied to a variety of memory ar-
eas include stack, heap, libs and mmap, VDSO, exec
and linker. Unfortunately, the ASLR support in An-
droid 4.0 was not completely effective for mitigating
real-world attacks, due to the lack of randomization
of the executable and linker memory regions. It also
would be beneficial to randomize the heap by setting
kernel.randomize_va_space = 2. These deficiencies
are resolved in the next android releases [3].

Moreover, No-eXecute is a technology used in CPUs
to segregate writable and executable areas of memory.

ISeﬂure@



The ARM architecture refers to the feature as XN for
eXecute Never, which was introduced in ARM v6 and
is used in all of the next versions [4]. XN combined
with other complementary mitigation techniques such
as ASLR and stack smashing protection, makes it
difficult to exploit traditional memory corruption vul-
nerabilities.

Despite the availability of protections such as ASLR
and Canary, attackers are still able to bypass coun-
termeasures while they are often vulnerable to brute
forcing [5] or leaking out sensitive information about
memory layout [6]. Additionally, non-executable pro-
tection mechanisms could be bypassed directly by
Code Reuse Attacks (CRA), e.g. Return Oriented Pro-
gramming (ROP) and all of its variations. These types
of attacks compromise the control flow of a vulnerable
program during run-time by exploiting various vul-
nerabilities (e.g. stack or heap based buffer overflow
[7], integer overflow [8], dangling pointer reference [9]
and format string [10] vulnerabilities).

While there is still a large portion of software pro-
grams implemented in unsafe languages such as C,
C++ or Objective C that do not enforce boundary
checking, we can expect a large attack surface on most
of the current systems. Even though there are type-
safe languages such as Java, their interpreters are still
implemented in type-unsafe languages which could
precisely be the point of vulnerability.

1.1 Our contribution

Currently, attackers become more interested in mod-
ern smartphone targets like Google’s Android and
Apple’s iPhone (e.g. [11][12][13][14]). Since ARM ar-
chitecture is the standard platform for smartphones,
we concentrate on ARM based processors rather than
x86-based ones [13]. Unlike X86, instruction pointer
register (e.g. program counter) can be manipulated
arbitrarily through the use of various types of instruc-
tions in ARM. Therefore, a widespread set of instruc-
tions available to change program counter as a gadget
terminator.

In general terms, we can classify available imple-
mentations of CRAs into three different classes: Re-
turn to Zero Protection Attacks (Ret2ZP) [15], Return
Oriented Programming (ROP) [16] and BLX-Attacks
[17], which are constrained to a limited number of
instructions (i.e. include branches and pops) as the
gadget terminators.

In this paper, we demonstrate the layouts of a gen-
eral code reuse attack model in ARM architecture
that covers all types of possible gadgets terminator in-
structions in order to spawn CRAs. The attack model
consists of five separate sub-models:

18:0ured)

Aggrandizing the Beast’s Limbs: Patulous Code Reuse Attack on ARM Architecture — F. Aminmansour et al.

e The first two of them utilizes different variations
of pop and load instructions to initialize registers
in a lubricant gadget. Applying lubricant allows
attackers to execute a sequence of functional gad-
gets consecutively. Like ROP attack method, the
first sub-model pops the address of next instruc-
tion into pc. Unlike common gadget terminators
applied in current CRA methods, the second sub-
model utilizes load instructions to set pc with an
appropriate address.

e The third sub-model uses all of the data process-
ing operations with having pc as their destination
register. These types of gadget terminators have
been never used before in CRA models.

e Like ROP and BLX-Attack, the fourth sub-model
utilizes branch instructions such as b, bx, blx.

e The last sub-model is a combination of previ-
ous sub-models. Moreover, it proposes a novel
technique for using conditional direct branch in-
structions, as our gadget terminators, through
the introduction of subversion gadgets.

In addition, we show deficiency of return address
checkers by introducing different sub-models for
PCRAs [18]. Also, we introduce a set of useful func-
tional gadgets available in libc.so, Android KitKat
4.4. Furthermore, we present a new algorithm called
Caspian_Tiger for finding PCRA gadgets and fi-
nally implement a sample proof of concept attack in
Android KitKat (i.e. APT 19).

1.2 Outline

The remainder of this paper is organized as follows:
Section 2 presents some background information about
relative aspects of ARM architecture and Android
operating system. Section 3 describes current code
reuse attack techniques available in ARM architecture.
Section 4 draws the layouts of our new proposed attack
model. Section 5 introduces the Caspian_Tiger tool
and discusses the details of a proof of concept PCRA
exploit. Finally, in Section 6, we conclude our work
concisely.

2 BACKGROUND

In this section, we present a brief introduction on
ARM architecture as well as essential information
about Android platforms.

2.1 An Overview on ARM Architecture

ARM or Advanced RISC Machine is a family of Re-
duced Instruction Set Computer (RISC) processors,
which incorporates some typical related features of
RISC: firstly, it has uniform and fixed-length instruc-
tion fields to simplify instruction decode operation.
Secondly, it is a load/store architecture, where data-




January 2016, Volume 8, Number 1 (pp. 39-52)

processing operations do not directly operate on mem-
ory contents, but they only operate on register con-
tents. Also, In contrast to Intel X86, ARM architecture
allows machine instructions to operate on program
counter pc directly (eip on X86) [19].

Since the introduction of the ARM7TDMI micro-
processor, ARM provides two types of instruction set:
one of them is a fixed-width instruction set stored as
half-words or 16-bit, known as Thumb instructions;
and the other one stored as 32-bit instructions called
ARM. Actually, code conditions are removed from
nearly all Thumb instructions, which provides the ad-
vantage of improved code density over ARM [19].

The ARM architecture also supports two other
instruction set modes, Jazelle and Thumb Execution
Environment (ThumbEE). But the last two modes
are rarely used. Therefore, here in this paper, we
just focus on interworking between ARM and Thumb
mode. When an instruction (e.g. bx and blx) allows
instruction set interchange, the processor inspects the
least significant bit of the branch target address to see
whether it is set or not. If it is set, the target address
instruction would be in Thumb mode; otherwise, it
would be in ARM mode [19].

ARM has 31 general-purpose 32-bit registers so
that at any one time, just 16 of them are visible. The
other 15 registers are used to speed up exception
processing. Table 1 shows all of the general purpose
registers in user mode, each of which has a specific
role according to ARM architecture procedure call
standard (AAPCS) document (i.e., specifies the ARM
calling convention for a function call).

In addition to these 16 core registers, there is one cur-
rent program status register (CPSR) that is available
for use in conforming code (e.g., condition flags, inter-
rupt flags, etc.) [20]. The fifth bit of CPSR is called
T-bit that determines the execution mode of the pro-
cessor. If the T-bit is set, the processor is in THUMB
mode, otherwise, it would be in ARM mode [19].

In addition to T-bit, there are four other consid-
erable bits available in CPSR to display the state of
condition codes. Figure 1 shows the structure of CPSR
that contains the following ALU status flags:

(1) When the result of an operation is negative, N
bit will set to 1, otherwise, it would be 0.

(2) If the result of an operation is zero, Z bit will
set to 1, otherwise it would be cleared.

(3) If the result of an operation produce a carry, C
bit will set to 1, otherwise, it is cleared.

(4) Sometimes, the result of instructions such as
add, subtract, or compare is greater than or

Table 1. Core registers and AAPCS usage [19]

Role in the procedure call

Register Synonym Special standard

Ri5 PC The Program Counter
Ri4 LR The Link Register
Ri3 SP The Stack Pointer
Rio P The Intra-Proce.dure-call scratch
register
Riy Ve P Variable—regist.er 8 and Frame
Pointer
R0 Ve SL Variable-register 7
Ve Variable register 6
Ry BS
Platform register
TR
Rg Va Variable register 5
Ry 1%} Variable register 4
Rg 1% Variable register 3
Rs i Variable register 2
R4 1% Variable register 1
R3 Ay Argument / Scratch register 4
Rs As Argument / Scratch register 3
Argument / result / Scratch
Ry Az .
register 2
Ro A Argument / -result / Scratch
register 1
31 28 27 8 7 0
N Z C v Reserved Control bits

Figure 1. CPSR structure

31 28 27 2019 1615 12 11 4 3 0

Condition OP code Rn Rd Other Info Rm

Figure 2. ARM Instruction Format

equal to 231, or less than -231. Therefore, an
overflow will occur. When an operation causes
an overflow, V-bit will be set to 1, otherwise it
would set to 0 [19].

Instructions in ARM mode are conditionally exe-
cuted according to ALU status flags and the instruc-
tions condition field. Figure 2 shows the basic encoding
format for the instructions include Memory operations
(e.g. Load, Store) and Data Processing Operations
(e.g. Move, Arithmetic, and Logic instructions).

The bits 28 to 31 determine the circumstances under
which an instruction is to be executed. According
to the C, N, Z and V flags in CPSR, the conditions

1S¢0ured)




Aggrandizing the Beast’s Limbs: Patulous Code Reuse Attack on ARM Architecture — F. Aminmansour et al.

/Cunta cts | Phone

Home | Browser

Default
(Core)
Applications

Facebook \

Third party N
Applications Application

Skype

Layer

[ Activity \‘ "V\Vinduwr\ |rPackage\ '/Locstiun‘} ﬁNntiflcatinn\
[ Content \‘ ‘ View || Resource | rTelEphnny“‘ Application
Providerw System ‘\l\lanﬂger’ Manager ) Framework Middleware

‘( Surface [ Free ‘ ( Media b Android Run-time Layer
Manager | L Type | Framework >

Core 1
| Libraries

‘ SQLite

@ D (@ o
‘Webkit ‘ OpenGL/ES | Libraries
I\

o0 J [ Android

[ ) ) ( b Virtual

seL | ssL | Like Machine

. ' A ~ ——
= ~ - ~ e 2 =

Display Wifi Process ‘ File ‘ Binder (IPC)

Drivers Driver Manager System Driver o
L { 2 )\ )\ / Linux

[ Keypad ‘H/ Audio |
| Drivers || Driver

- Y o “ K 1
‘ Flash Memory Driver ‘ ‘ ower | SThC
§ ) | Management

Figure 3. Android Software Stack [21]

encoded by the instruction field might be met or not.
If the condition was met, the instruction would be
executed, otherwise it is ignored. While we have four
condition bits in each instruction, there are sixteen
possible conditions each of which represented by a
two-character suffix that can be appended to the
instruction mnemonic. In the absence of a suffix, the
instruction should always be executed regardless of
the CPSR condition codes. Therefore, the condition
field of most instructions is set to AL. Further details
about condition code status can be find in [19].

In ARM architecture, subroutine calling convention
is possible through the use of primitive instruction, BL,
which performs a branch-with-link operation. This in-
struction transfers the return address into the link reg-
ister (Ir) and the destination address into the program
counter (pc). When control returns from subroutine,
the content of Ir has been loaded back into the pc [20].

2.2 Android Software Stack

Android operating system is a stack of software com-
ponents which is roughly divided into five sections
and three main layers. Figure 3 demonstrates different
layers of Android software stack.

Linux kernel resides at the bottom of the layers
and provides basic system functionality like process,
memory and device management (e.g. camera, key-
pad, display, etc.) as well as handling all of the tasks
such as networking and a vast array of device drivers
(i.e., taking the pain out of interfacing to peripheral
hardware) [16] [21].

The next layer is middleware layer which consists of
two separate layers. The first bottom layer is a set of li-
braries including open-source Web browser engine We-

18:0ured)

bKit, well known native library libc, SQLite database
which is a useful repository for storage and sharing
of application data, libraries to play and record au-
dio and video, SSL libraries responsible for internet
security and so on. Another section available in this
layer is Android run-time, which provides a key com-
ponent called Dalvik Virtual Machine (DVM) (i.e. a
kind of Java Virtual Machine specially designed and
optimized for Android). Each application is executed
within a DVM running under a unique UNIX uid.
The Android runtime also provides a set of core li-
braries which enable Android application developers
to write Android applications using standard Java
programming language. The Application Framework
layer provides many higher-level services that allows
developers to make use of them in the form of Java
classes [16] [21].

At the top of the stack, you will find all of the
Android applications whether they have been origi-
nally installed on the device, or developed by a third
party. At first sight, because Android applications are
written in Java, they might be considered basically
protected against standard buffer overflow attacks
[22] due to their implicit boundary checking. However,
Developers may use Java Native Interface (JNI) to
incorporate C/C++ libraries into java program code,
e.g., due to performance reasons. Therefore, the se-
curity guarantees provided by the Java programming
language do not hold any longer [23].

3 Related Work

The most relevant works compared to ours are only the
three types of Code Reuse Attack techniques available
on ARM architecture. In this section, we will explain
all of the currently available models in details. Note
that there are also several related attempts done by
A. A. Sadeghi et al in previous work include [24] and
[25] in X86 systems.

3.1 Return to Zero Protection

Similar to Return to Libc attacks on X86 [26], a Return
to Zero Protection (Ret2ZP) attack [15] [27] exploits
a stack buffer overflow and rewrites the return address
to redirect control flow to a function presented in the
target system, with any desired argument values. How-
ever, as we mentioned before, while data-processing
operates only on registers, controlling the function’s
input arguments on the ARM architecture is more dif-
ficult and is possible through argument registers r0 to
r3, rather than the stack. To control the values of the
argument registers and to redirect control flow to the
desired function, the Ret2ZP attack uses a vulnerable
code sequence (VCS), which is already in the system
and is responsible to copy data from the stack to the




January 2016, Volume 8, Number 1 (pp. 39-52)

( High ‘ | &Function |'| 'é.g. Address of |
= ‘ System()
| Arguments o ]
- | e.g. Address of |
[ &VCS I_ f_bin/sh -

/1dm sp , {r@, r1, ...});
Add sp, sp , #4x;

Buffer ‘
/ pop {pc};

Low

Figure 4. Ret2ZP attack model

argument registers.

Figure 4 demonstrates general layout of Ret2ZP
model as well as a sample attack, which spawns a
shell through calling system() function in Libc with
an input argument, the address of /bin/sh.

3.2 Return Oriented Programming

Ret2ZP attack allows attackers to apply and execute
only the logic of predefined functions. This restriction
made attackers to introduce more applicable CRA
techniques such as Return Oriented Programming
(ROP). Term ROP Gadget in ARM is defined as
a sequence of machine instructions ending in bx Ir,
which requires special handling of the Ir value prior to
executing that gadget [16].

Typically, the value contained in Ir is always the
address of the gadget pop pc that is responsible to
fetch the addresses of next functional gadgets from
top of the stack and branch out there. Thus, in the
first step, attacker should rewrite the old Ir value by

the address of pop pc that stored somewhere in stack.

Also, the first address on the stack should be the
address of first functional gadget, which is terminated
by bx Ir. While bx allows interworking between ARM
and Thumb mode, there is no need to be worry about
executing ARM and Thumb instruction sequences any
more [16].

Figure 5 shows different steps of ROP attack on
ARM. In (1) and (2), the first ARM gadget loads the
address of pop pc into Ir and branches out into that
address. Then the following Thumb gadget branches
out to the second functional gadget ((3) and (4)). As a
consequence, Ir would always point to a Thumb gadget
that allows seamless continuation ((5) and (8)), so that
any gadget ends with only bx Ir can be safely executed
((6) and (7)). Now, it is possible to use any instruction
sequences ending with a procedure return (i.e. bx Ir)
as a gadget.

3.3 BLX-Attack

This attack method consists of three main parts:
I) setup, IT) update-load-branch (ULB) sequence or

©

High | | Instruction sequence; 0
& 3! Gadget BXLR; ]
O.E—

(Instruction sequence;
L - Loading LR;
Low | ‘ BX LR; @

Figure 5. Return Oriented Programming on ARM

A A
O N grrmme—
Address #3 — — BLX Ryzg:
Argument #2
@ Trampoline:
Address #2 — = v Update;
Instruction Sequence; @ BL"M.;]_
BLX Ruig; ranch;
Argument #1 I |
Address #1 —I l —_—— e —— = @V
Setup Gadget:
Buifer I- Initialize Ry g and SP;
BLX Rug;

Figure 6. BLX Attack model

Trampoline, and III) functional gadgets, each of which
ending in BLX Ry p instruction [17].

In the first step of attack @, the adversary injects
gadget addresses and arguments into a vulnerable pro-
cess memory space and subverts the control of a pro-
gram to setup gadget. This gadget initializes Ry p
and other registers like SP and R4 that refer to in-
jected arguments and jump addresses respectively ((D7
(@ and (7)). Register Ryrp is loaded with address of
trampoline. Furthermore, all of the functional gad-
gets end with BLX Ryzp (2), (B and (8)). Therefore,
after each functional gadget is executed, trampoline
redirects execution to the next gadget address by up-
dating its pointer register ((3) and (6)) [17]. A sample
of Setup sequence and trampoline are as follows (i.e.,
r3is Ryrp and r6 is jump address pointer register):

4 Patulous Code Reuse Attack on
ARM

As we mentioned in Section 2, machine instructions in
ARM architecture are allowed to operate on register
pc directly. Therefore, any code sequences ending
with instructions that modify pc could be taken into
account as a potential Patulous Code Reuse Attack
(PCRA) gadget. As a matter of fact, the heart of
PCRA model is the possibility of using any machine
instruction that modifies pc, instead of just normal
branch instructions, to redirect the control flow of a

ISel}ure@




— e ——— — —
‘ Argument #4 | @ Instructio.n Sequence;
L | @ Modify PC;
‘ Argument #3

| Instruction Sequence;
‘ Argument #2 J Modify PC;
| Argument #1
| Address #1
g . y | Instruction Sequence;
4 3 Modify PC;
‘ Buffer |@

Figure 7. General Patulous Code Reuse Attack Model

vulnerable program to any desired gadget sequences.

Previously, any code sequences ending in pop pc,
BX Ir or BLX Ri (e.g. Ryrp) were taken into account
as a CRA gadget. This section introduces three dif-
ferent novel attack models for PCRAs as well as a
set of useful gadgets to initialize a real world attack.
Also, we will show that how other instructions include
arithmetic instructions, logical instructions, shift in-
structions, different variations of load instruction and
data movement instructions, which modify pc, could
be considered as a useful terminator instruction of
a gadget. PCRA intends to present a general model
attack for the entire above mentioned different pos-
sible gadget types in order to propone much more
formidable attacks. Therefore, an acceptable counter-
measure should face off all types of PC-modifiers.

Figure 7 demonstrates the general idea of PCRA
sub-models. In the first step of attack, an adversary
hijacks the control flow of a program using one of
the memory corruption errors and subverts program
counter to Lubricant gadget. This gadget is responsi-
ble for loading all other registers that are going to be
used in the next following functional gadgets. Each
functional gadget advances the state of attack dur-
ing its execution. The final instruction in a functional
gadget is always a pc modifier that would imitate a
normal branch operation. Any instruction in which
pc is the destination register of an operation could
be considered as a pc modifier. Accordingly, loading
operand register(s) of pc modifier with appropriate
values should have been done after the previous exe-
cution of Lubricant. Putting them all together, the
model allows attackers to execute a seamless continu-
ation of functional gadgets.

In (1), pc points to the first instruction of Lubricant.
Lubricant loads all or some of the general purpose
registers with appropriate values and finally modifies
pc, so that it points to the next functional gadget. In
@, the first functional gadget is executed and then
passes pc back to the Lubricant again. Lubricant loads
registers in (3) and (5), and redirects the control flow to

18:0ured)

Aggrandizing the Beast’s Limbs: Patulous Code Reuse Attack on ARM Architecture — F. Aminmansour et al.

the functional gadgets ((4) and (6)). Also, some of the
functional gadgets return back to the Lubricant again
((® and (7). In other words, an attacker can execute
a number of functional gadgets tandem directly until
she needs to update registers again.

Thanks to Interworking, ARM and Thumb gadgets
can even be arbitrarily mixed. The only exception
here is the gadgets ending in ARM mov pc, ri that can
only be followed by another ARM gadget, because
they do not support Interworking.

The Lubricant gadget is not necessarily a single
code sequence; it can consist of several code snippets,
chained together, one after another, turning registers
to a proper state.

The obvious restriction of this model is that other
instructions rather than pc modifiers in a functional
gadget should not use or change the content of registers
involved in pc modifiers. Otherwise, the next value of
pc would be a wrong address, which leads the execution
of gadget sequences to a corruption.

There are different creative ways of implementing such
an attack in ARM architecture. In the rest of this
section, we will go into details of PCRA sub-models
according to different possible types of PCmodifiers.

4.1 Popping Values into all Necessary
Registers

As we explained before, both of the Lubricant gadget
and PC modifier play important roles in launching
PCRAs. There are various alternatives for Lubricant
gadgets. One of them is through the use of pop instruc-
tions. There are two types of pop based Lubricant
gadgets according to attacker’s demand:

Single Partially Loader Lubricant

These Lubricants load some of the general purpose
registers (i.e. depends on the next operational gadgets)
rather than all of them. For instance:

558a0: pop r4, t5, 16, 17, r8, 19, sl, fp, pc;

Multi code-sequences and fully loader
Lubricant

According to our scrutiny in libc.so, we have found out
that there is no pop instruction for loading ip register
explicitly. Except Ir, all of the other 14 registers will
be loaded either explicitly (e.g. r5, r6, etc.) by popping
values into them, or implicitly (e.g. sp, r0) through
other computational operations, after executing se-
quences in Table 2 more careful look at sequences
clarifies that one cannot apply Ir as an operand regis-
ter in the next operational gadgets. While Ir is loaded
with the address of seq#2, it is still possible to use Ir




January 2016, Volume 8, Number 1 (pp. 39-52)

Table 2. A multi code-sequences and fully loader Lubricant

Sequence No. Instructions

12e24: pop {r5, 16, r7, r8, 19, sl, fp}

Seq#1 12e28: pop {r0, r4, Ir}
12e2c: bx Ir
Seq#2 491ac: pop {r2, r5, r6, r7, pc}

3eale: sub.w ip, r0, r2, Isr #12
Seq#3 3ea22: add.w r0, r5, ip, Isl #12
3ea26: pop {r3, r4, r5, pc}

Seq#4 491ac: pop {r2, r5, t6, r7, pc}
Seq#5b 53a34: pop {rl, pc}
High

8 bytes values
& Sequence #4 F

20 bytes values

J—b‘ 53a34: pop {ri, pc}; ] N
—>[4slac: pop {r2, r5, ré, r7, pc}j]

3eale: sub.w ip, re, r2, lsr #12;
3ea22: add.w re, r5, ip, 1lsl #12;

3ea26: pop {r3, r4, r5, pc};
—D[Aslac: pop {r2, r5, ré, r7, pc},'J

{ueu: pop {r5, ré, r7, rs, r9, sl, fp};}

& Sequence #4 =
16 bytes values
& Sequence#3

20 bytes values

& S # =
Sl ) 12e28: pop {re, r4, lr};

12e2c: bx lr;

40 bytes values

N\

999 FF

& Sequence #1  —

Figure 8. A multi code-sequences and fully loader Lubricant

in pc modifiers or gadgets’ terminators.

Figure 8 demonstrates the layouts of our fully loader
Lubricant gadget. The first and second sequences (@
and @) load several registers include r6, r7, r8, r9, sl,
fp, r4 and Ir with their final true values. Conversely,
registers r0, r2 and r5 are initialized with specific
intermediate values in order to compute the valid
content of ip and r0 by the end of sequence @ Finally,
by executing sequences (4) and (5), the rest of the
registers include r2, r5 and rl would be initialized
correctly.

4.2 Loading Registers with Appropriate
Values

Another alternative for implementing Lubricant gad-
get is through the use of different variations of load
instruction. Table 3 shows instruction sequences ex-
tracted from libc.so, which makes it possible to load
all 15 registers.

Sequence (1) executes Idmia instruction which stands
for Load Multiple registers and Increment After. This
instruction loads several registers from the base ad-

Table 3. Lubricant with load instructions

Seq. No. Instructions

125de: Idmia.w sp!, {r3, r4, r5, 16, r7, 8, r9, sl,
fp, pc}

26660: f109 0201 add.w r2, r9, #1

Seq#1

26664: 615c str r4, [r3, #20]
Seq#2 26666: f8c8 2010 str.w r2, [r8, #16]
2666a: 4640 mov r0, r8

2666¢: e8bd 8ff8 Idmia.w sp!, {r3, r4, r5, 16, r7,
r8, 19, sl, fp, pc}

3ceb6: add.w ip, r2, #11136; 0x2b80
3ceba: add.w r3, ip, #8
3cebe: add r4, r3
Seq#3 3cecO: str.w r4, [r7, r5, Isl #2]
3cecd: str r4, [r6, #40]; 0x28
3cec6: add sp, #8
3cec8: Idmia.w sp!, {r4, r5, 16, r7, r8, pc}

4f69a: mov r0, r6
Seq#4 4f69c: add sp, #60; 0x3c

4f69e:ldmia.w sp!, {r4, r5, r6, r7, r8, r9, sl, fp,

pc}

54a28: |dm r0, {r0, r1, r2, r3, r4, r5, 16, r7, 18,
Seq#5 r9, sl, fp}

54a2c: Idm sp, {sp, Ir, pc}

dress of sp and updates sp by incrementing it 40 bytes.
The goal of executing sequence (2) is to load r2 with
a value which is appropriate for computing the con-
tent of ip in sequence @ By executing sequence @,
an appropriate value would be set into r0 in order to
use it in sequence (5). Finally, in sequence (5), all of
the registers except ip would be initialized completely
again (Figure 9).

The advantage of this method to the previous one
is that the adversary can inject her shell-code any-
where in a program memory space (e.g. heap). As we
mentioned in Section 1, normally ASLR does not ran-
domize heap addresses while some legacy applications
assume that the heap is mapped in a specific loca-
tion. Therefore, setting up the attack in heap would
be somehow beneficial.

4.3 Data Processing Operations as PC
Modifiers

The “data processing operations as PC modifier sub-
model illustrates that all of the data processing oper-
ations with the destination of pc, can be considered
as a PC modifier. Table 4 shows different kinds of
ARM and THUMB instructions acceptable in this

1S¢0ured)




High

60 bytes values
S 54a28: ldm re, {re, ri, r2, r3, r4, rs,
1 6, r7, r8, r9, sl, fp};
&S s ] ré, r7, rg, r9, sl, fp};
. e Y @ 54a2c: ldm sp, {sp, 1lr, pc};
4fé9a: mov re, ré;
4fe9c: add sp, #60; ex3c

4fe9e:1ldmia.w sp!, {r4, r5, ré, r7, rs,
r9, sl, fp, pc};

36 bytes values

60 bytes junk code | @

& Sequence #4  ——!
24 bytes values | @

| 8bytes junk code |

& Sequence #3 }—
40 bytes values @
& Sequence #2 —J
- B 125de: ldmia.w sp!, {r3, r4, r5, ré, r7,
| 40bytesvalues | iy r8, ro, sl, fp, pck; )
_ < 7
Low | || & Sequence#1

Figure 9. Lubricant with load instructions

3ceb6: add.w ip, r2, #11136; ox2bse
3ceba: add.w r3, ip, #8;

3cebe: add r4, r3;

3cec@: str.w r4, [r7, r5, 1lsl #2];

3cec4: str r4, [r6, #40]; ox28
3cec6: add sp, #8;
3cec8: ldmia.w sp!, {r4, r5, ré, r7, rs,
pels

26660: 109 0201 add.w r2, r9, #1;
26664: 615¢c str ra4, [r3, #20];
26666: f8c8 2010 str.w r2, [r8, #16];
2666a: 4640 mov re@, rs;
2666¢c: e8bd 8ff8 ldmia.w sp!, {r3, r4,
r5, ré, r7, r8, r9, sl, fp, pc};

Table 4. Possible instructions that can be used in data pro-
cessing operations model

Logical Shift Arithmetic Move Data

SUB(S)
SBC(S)
RSB(S)
RSC(S)
ADD(S)

AND(S) ASR(S)  SUB MOV (S)

EOR(S) LSL(S)  ADD MVN(S)

ADC(S)
MUL(S)
MLA(S)
MLS

UMULL(S)

ORR(S) LSR(S) MUL

UMLAL(S)
Others

ORN(S) ROR(S) DIV Ol ins.

BIC(S) RRX(S)

sub-model. All of the gadgets ending with any type
of operations, such as arithmetic, logical, shift and
data-transfer that manipulates pc are a member of
this sub-model.

Although there are a fewer number of gadgets avail-
able for this type in the libraries, Table 5 shows several
examples of them. The data processing operations
used to manipulate destination register, pc, include
andeq, mov, add, adc, eoreq, subeq, which are extracted
from libc.so and libwebviewchromium.so.

Each of these gadgets could be used as a functional
gadget for a specific intention:

(1) The first gadget multiplies two values.

ISeGure@

Aggrandizing the Beast’s Limbs: Patulous Code Reuse Attack on ARM Architecture — F. Aminmansour et al.

(2) The second gadget makes it possible to store any
arbitrary data value in any arbitrary memory
address as well as data movement operation from
one register to another.

(3) The third gadget could be used as a shift opera-
tion.

(4) The fourth gadget makes the execution of a log-
ical operation (e.g. and) between two arbitrary
values possible.

(5) The fifth gadget is responsible for adding up two
values.

(6) The sixth gadget implements another logical
operation, eor, between two registers.

(7) The seventh gadget lets us perform a reverse
subtract operation.

(8) The eighth gadget makes it possible to load
a register by a value in an arbitrary memory
address.

4.4 Branch instructions

According to ROP and BLX attack models, it is possi-
ble to use all types of Branch instructions as a gadget
terminator (i.e. B, BL, BLX, BX, CB, TBB, TBH) [17].

4.5 Combined Attack Model

We can classify all of the other tricky and rare attack
methods in a combined category. In this sub-model,
an adversary can use all other instructions such as
parallel arithmetic or direct branches to imitate the
convention of CRAs. Therefore, we can classify gadgets
with either direct or conditional branches as well as
any combination of previously mentioned sub-models,
under this class.

In some cases, there are several operational gadgets
in a library that they branch to a specific same address
directly (i.e. branching to a label). We call the desti-
nation instruction sequence, a Subversion Gadget, if
we could find an indirect PC modifier as the termina-
tor of the sequence. Obviously, a better Subversion
gadget consists of fewer instructions to decrease the
side effects of its execution.

Identifying Subversion gadgets in a library helps
an attacker to apply gadgets terminated by direct
branches in order to expand the domain of her appli-
cable gadgets as well as to bypass defence mechanisms
such as indirect branch checkers.

Figure 10 depicts that how we can execute functional
gadgets terminated in conditional or non-conditional
direct branch instructions in order to advance the
steps of attack or to load registers (e.g. ip and r0 here)
with appropriate values.




January 2016, Volume 8, Number 1 (pp. 39-52)

Table 5. Sample gadgets with pc modifiers in the form of data processing operations

# Gadget with data processing PC modifier Library
828: muleq r0, Ir, r6
1 Libc.so
82c: andeq pc, rl, ip, Isl #24
1cab4: str r3, [r7, #112]; 0x70
Libc.so

2 1ca56: movs r2, r0]

1cab8: mov pc, r9

ed2892: Isls r7, r2, #1
ed2894: add pc, 5

Libwebviewchromium.so

10ecd94: and r3, r2, fp, Isr #21
10ecd98: adc pc, ip, #872415233; 0x34000001

Libwebviewchromium.so

2e6aa4: add r4, r8
5 2ebaab: Isls 6, r1, #3
2e6aa8: add pc, b

Libwebviewchromium.so

137c76¢: eorseq r6, fp, r5, asr #21
137c770: subeq pc, r3, rl, Isr #17

Libwebviewchromium.so

13a3blc: rsbeq r2, Ir, rl, Isr #28

13a3b20: eoreq pc, 5, r7, asr r9

Libwebviewchromium.so

1c970: Idr 15, [r7, #0]
8 1c972: movs r2, r0

1c974: mov pc, r2

Libwebviewchromium.so

Subversion ®

12a44: pop {r4, 1r};
2a48: bx lr;

12a10: adds r2, r2, #4; @ 12a2¢: 1drb re, [ra], #1; @
12a14: moveq ro, #0; 12a30: 1drb ip, [r1], #1;

12a18: beq 12a44 <memcmp+0x134>; 12a34: subs r@, ro, ip;

12alc: b 12a2c <memcmp+@x1lc>; 12a38: bne 12a44 <memcmp+@x134>;

Figure 10. Using direct branches

4.6 PCRA versus Classical CRA

In this section, we will clarify the key differences
between currently available CRA models and proposed
PCRA as follows:

(1) PCRA classifies all types of gadgets into two
major classes in an abstract level: functional
gadgets and Lubricant ones. As we have men-
tioned before, a Lubricant is a piece of code that
is responsible to load at least two registers, in-
clude pc, in order to make the execution of the
following functional code sequences possible. In
PCRA, when PC modifier in a functional gadget
(i.e. the final instruction of functional gadgets)
loads or pops multiple registers in a single in-
struction, both types of gadgets would be com-
bined as only one gadget. So, it is not necessary

to execute any gadget (e.g. pop pc or trampo-
line) between two functional ones to relay the
execution of attack, which was a normal part of
classical CRA models.

Initializing almost all registers in each Lubri-
cant could eliminate the side effects of execut-
ing larger functional gadgets. Hence, PCRA can
be considered as a more tolerable model rather
than classical CRAs.

Previously, in classical CRA models, gadget ter-
minators were among different variations of pop
and branch instructions. In addition to those
two instructions, PCRA applies all types of data
processing operations, different types of load in-
structions (i.e. with destination operand of pc)
and direct branches to another code snippets
with indirect PC modifiers (i.e. subversion gad-
gets).

In the classical CRA models, both duties of ad-
vancing the attack state and loading registers
were assigned to the operational gadgets. Also,
we had Trampoline or pop pc to relay the execu-
tion of operational gadget sequences. Conversely,
in PCRA, we have separated the tasks of load-
ing registers (i.e. Lubricant) and advancing the
steps of attack (i.e. functional gadgets) in order

1S¢0ured)




to present a more abstract and comprehensive
model.

4.7 A sample set of useful gadgets

Table 6 shows a handful of useful considerable gadgets.
Two NULL Writer gadgets are introduced so that
both of them use BIC instruction to provide a NULL
value in r2. Also, by executing the second instruction
of both gadgets, it is possible to rewrite any content
in memory by the NULL value that stored in r2. In
addition to r2, the first NULL Writer sequence allows
an attacker to load r0 with NULL too.

In the most of practical real world attacks, one may
need to take control over the Stack Pointer register in
order to keep the pointing address of sp updated all
the time. Therefore, we have provided three instances
of Stack Pivot gadgets in Table 6.

5 Instantiation In Android KitKat IN
ANDROID KITKAT

This section provides the details of our PCRA PoC
set up in Android KitKat with API 19. This attack
intends to launch a shell terminal for the adversary
by exploiting a stack overflow vulnerability. Android
emulator image includes Android shell terminal as a
part of its DevTool application by default. Also, we
have provided a sample gadget for each type of the
partially Lubricants.

5.1 Adversary Model

We have made the following assumptions to define the
adversary model:

(1) The target platform enforces the XN protection.

(2) Attacker is unable to copy NULL bytes through
vulnerable function.

(3) She can only use gadgets derived from libe.so.

(4) Other protection mechanisms (e.g. ASLR and
stack canary) are bypassed in the first stage
of attack through brute forcing [5] or sensitive
information leakage about memory layout [6].

5.2 Finding PCRA gadgets

We have utilized a simple and self-developed tool
to find PCRA gadgets in ARM architecture called
Caspian_Tiger.

Algorithm 1 shows the Caspian_Tiger procedure which
uses a string search to find indirect jumps. It shows
that we have classified pc modifiers into direct and indi-
rect branches: IndirectpcModifiers and DirectBranches.
The algorithm scans the executable region of a library
to find the bytes of all types of PC modifiers. Then it

18:0ured)

Aggrandizing the Beast’s Limbs: Patulous Code Reuse Attack on ARM Architecture — F. Aminmansour et al.

steps backward and decodes previous bytes to build in-
tended and unintended possible PCRA gadgets. d,nax
is the number of backward bytes and the maximum
size of a PCRA would be gadget.

After defining two sets containing all variations
of possible PC modifier instructions, the algorithm
disassembles library code at address p in both ARM
and THUMB modes to obtain the last instruction of a
PCRA would be gadget (i.e. ARML and THUMBL). If
both of the ARML or THUMBL were among indirect
branches, an ARM or THUMB gadget would be found
respectively. But if an ARML was a direct branch to a
destination label, we must check the destination code
snippet with length len to see whether it is terminated
by an indirect branch or not. If the result was true and
the destination code snippet was a Subversion gadget,
we would consider current code snippet with length of
Omaz and final instruction of ARML as PCRA gadget.

5.3 Launching the Attack

To launch the attack in Android, we took the following
main steps:

(1) Finding/writing a sample vulnerable JNI appli-
cation for android.

(2) Getting the dump of libraries (e.g. libc.so) dy-
namically linked to the program.

(3) Identifying useful instructions to create Lubri-
cant and operational gadget sequences.

(4) Finding the base address of libc.so while attach-
ing to the vulnerable process.

(5) Writing our PCRA shell-code.

(6) Exploiting mentioned vulnerability to run the
attack.

Our vulnerable application is a standard Java pro-
gram using JNT to include an unsafe C/C++ function.
Additionally, various vulnerabilities are identified
in native code of the JDK (Java Development Kit)
[28]. Therefore, security guarantees provided by Java
programming language do not hold any longer.

We are going to spawn an Android shell in a local
machine by executing the execve system-call:

execve(/bin/sh, NULL, NULL)

According to this system-call implementation and
definition, we need to pass our program directory, e.g.
/bin/sh, as the first input argument and NULL value
as the second and third ones, in order to spawn a
shell. The following sequence of gadgets provides us
the appropriate state of registers before executing a
supervisor call:

G1 is our partially Lubricant gadget using load




January 2016, Volume 8, Number 1 (pp. 39-52)

Table 6. Some useful gadgets

Gadget Title Instruction Sequence Library

16e0e: bic.w r2, rl, ip
16e12: str r2, [r0, #0]

Null Writer Libc.so
16e14: movs r0, #0
16e16: pop {r3, pc}
4f72c: bic.w r2, 10, ip

Null Writer 4f730: str.w r2, [rl, r3, Isl #2] Libc.so

4f734: pop {r3, pc}

16c18: add sp, #12
Stack Pivot Libc.so

16cla: ldr.w pc, [sp], #4

Stack Pivot 54a2c: ldm sp, {sp, Ir, pc} Libc.so
11666: add sp, #60; 0x3c .
Libc.so
& Lubricant 11668: |dmia.w sp!, {r4, r5, r6, r7, r8, r9, sl, fp, pc}
12a44: pop r4, Ir
Subversion Libc.so
12a48: bx Ir
Loader 13150: pop {r0, r4, r5, 16, r7, Ir} .
Libc.so
Lubricant 13154: bx Ir
Loader 25b4de:ldmia.w sp!, {r4, r5, r6, r7, r8, r9, sl, fp, pc} Libc.so

stored, r9 with the address of G4, pc with the address

Table 7. Appropriate state of registers .
of G2 and the rest of them with a dummy value.

ist 1 2 c e s .
Registers il for0 z - G2 initializes r0 with NULL and pops the address
Values 0x0b /bin/sh NULL NULL of G3 into Ir. Also, while we need to declare the end
of string /bin/sh in memory, we store a NULL word in
Table 8. Gadget chain of PoC attack G4 after it. So, we initialize r4 with a right memory

address which is the address of /bin here.

G1: Idmia.w sp!, {r4, r5, r6, 7, r8, r9, sl, fp, pc}

G3 sets NULL into r2 and updates pc in order to

mov r0, #0 redirect control flow to the next gadget.
G2: pop {r4, Ir} G4 updates r1 with NULL, stores a NULL word after
bx Ir /bin/sh and pops the address of G5 into pc.
a3 movsr2. 10 G5 updates r0 with the address of /bin/sh and
’ mov pc, 19 branches to G6.
mov rl, r0 G6 would set execve syscall number in r7 and finally
G4: execute a supervisor call which gives us an Android
str rl, [r4, #8] shell
0, #0 . . .
movs 10, # Figure 11 depicts the details of our shell-code. As
pop {r4, pc} you can see in the stack of our vulnerable program,
mov r0, r7 the addresses of THUMB instructions in our shell-
G5 bix 6 code are added by 1 due to the possibility of switching

between ARM and THUMB mode. MOV instruction
C6: mov r7, #11 can be executed in both ARM and THUMB mode.
svc 0x00000000

While we wanted to demonstrate the principals
of aforementioned sub-models as the convention of
instructions, which loads r6 with the address of G6, PCRA, we have applied the first gadget as our Lubri-

r7 with the address of memory area where /bin/sh is
Sebutd)




Aggrandizing the Beast’s Limbs: Patulous Code Reuse Attack on ARM Architecture — F. Aminmansour et al.

Algorithm 1 CspianTiger string search to find PCRA gadgets

1: procedure CASPIAN_TIGER(0,44)

2: IndirectpcModifiers «— pop, ldm, 1dr, add, adc,sub, sbc, rsb, rsc, mul, mla, mls, div, mov, mvn,and, eor,

orr, bic, orn, Isl, Isr, ror, asr, rrx, b, bx, bl, blx

> Indirect branches by checking the op-codes

9: ARML < disassemble(C|p : 32])
10: THUMBL < disassemble(C[p : 16])
11:

12:

13:

3: DirectBranches < b, bl > Direct branches for all types of condition field mnemonic
4: ARML > Last instruction of gadget in ARM mode
5: THUMBL > Last instruction of gadget in THUMB mode
6: ARMG > A would-be gadget in ARM mode
7 THUMBG > A would-be gadget in THUMB mode
8: for address p that is a multiple of 16 in C' do > To find both intended and unintended instructions in

ARM and THUMB
> Last instruction of a would be gadget in ARM mode
> Last instruction of a would be gadget in THUMB mode
if ((ARML e IndirectpcModifiers) A ((Rd = pc) V (pc € Reglist))) V(ARML € DirectBranches) then
> If the last instruction of would be gadget is among IndirectpcModifiers or DirectBranches (i.e. with the
destination register of pc or with a register list of ldm or pop contains pc), then
if (ARML ¢ DirectBranches) then > If the last instruction of a would be gadget is among
indirect branches,
GARM = disassemble(C[p Omaz : D + 32])
maximum length of our gadgets)

> disassemble in ARM mode (i.e. max is the

14: Print GARM > print the ARM gadget found
15: end if
16: if (ARML € DirectBranches) then > If the last instruction of a would be gadget is among

17:

indirect branches,

if (destinationcheck(label, len) is true) then > Check the destination label to see if there is
any indirect branches available in the range of (label, label 4 len), then disassemble and print the gadget if
the result is true.

18: GARM = disassemble(C[p pmaqz : D + 32])

19: Print GARM

20: end if

21: end if

22: end if

23: if THUMBL € IndirectpcModifiers) A ((Rd is pc) V (pc € Reglist) then > If the last instruction of

would be gadget is among IndirectpcModifiers (i.e. with the destination register of pc or with a register list
of ldm or pop contains pc), then disassemble and print the THUMB gadget.

24: GTHUMB = disassemble(C[p 0maz : P + 16])
25: Print GTHUMB

26: end if

27: end for

28: end procedure

cant and the others as the functional ones. There are
definitely several complicated shell-codes that can be
performed by the convention of PCRA.

6 Conclusion

In this paper, we have presented a general attack model
in ARM computing platforms called Patulous Code
Reuse Attack, which is different from the convention
of previous models (e.g. BLX-attacks and ROP).

In contrast to previous models, it suggests that there

is no necessity to use function epilogue sequences (i.e.

pop or bx) or the indirect subroutine call instruction

18:0ured)

BLX (e.g. BLX-attack) to chain functional code snip-
pets. Instead, our attack chains instruction sequences,
available in existing libraries, together by means of
any machine instruction that can modify or change
pc. Two of our attack sub-models are able to bypass
return address checkers such as ROPdefender [29][30].
We have developed a tool called Caspian_Tiger to find
PCRA gadgets and have mounted a PoC attack on
Android 4.4 platform. Our attack exploits a stack over-
flow vulnerability to launch an Android shell to the
adversary. Finally, we conclude that due to possibil-
ity of changing pc directly by means of any arbitrary
machine instructions, it would be difficult to define a
normal behavioural profile for CRAs in ARM.




Spawning an Android shell

January 2016, Volume 8, Number 1 (pp. 39-52)

b6faaa2 (offset: daa2):
dmiaw spl, {r4, r5, r6, r7, r8, ra, 5|, fp, pc
J

Libc Base Address: b6f8d000
—————————
Oxbefffaf8 | [[ra+#8] || 0x00000000 |2 (Gofocoss (ofeer: 21078)
Oxbefffafd [ra+#4] 0x68732f2f i | | 21528 mov rG, #0 & \
2 2192¢: pop {r4, Ir}
Oxbefffaf0 | [ T[] | A 0x6e69622f ||Z e i |
Oxbefffaec | [Tpc || | Oxb6f9a05d fm————————
Oxbefffae8 7,4 | 0x41414141 |3 DoF29a56 (offset: 10a55)
Oxbefffaed It | 0xb6fa9a57 — i 1caS6: movsr2, rd 1
Oxbefffaed | | |r—( Oxbefffaf0 JoasE movpe. 19 I
Oxbefffadc pc || | OxbEfaed29 ettt etk
Oxbefffad8 fp || | 0x41414141 |4 (bsfazats(offset 15414)
Oxbefffadd 15414: mov r1, r0
xbefffa sl || [ 0x41414141 U p 15416 strrd, [ra, 28] 4
Oxbefffad0 19 || | Oxbbfa2415 15418: movs r0, #0 |
Oxbeffface | [ 18 || | 0x41414141 RS I
Oxbefffacg | [ 17 |“© Oxbefffaf0 (————————
Oxbefffacd r6 0xb6facccl | 5 b&f9a05c (offset: dOSC)
Oxbefffac 5 0x41414141 ~— 4| dO5c: mov rQ, 17 ¢— —
xoeTtae =1 x d0B0: blx r6 |
Oxbefffabec | [ r4 0x41414141
1 _——— e ———— -
Oxbefffabs | [OldIr | 0xb6f9aaal3 |— ls
b6faccc (offset: 1fccO):
Oxbefffab4 0x41414141 U —p et mov 7, 811
Oxbefffab0 | Low | 0x41414141 1fcea: svc 0x00000000

Figure 11. PCRA shell-code and stack layout of the attack

References

[10]

Eric Grevstad. CPU-based security: The NX bit.
Disponvel on line em julho de, 2004.

PaX Team. PaX address space layout random-
ization (ASLR). 2003.

Joh Oberheide. A look at ASLR in android ice
cream sandwich 4.0. The Duo Bulletin, 2012.
Manjeet Singh Vaneet. Linux Kernel Memory
Protection (ARM). 5(4), 2014. ISSN 0975-9646.
doi: 5869-5871.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-
Jin Goh, Nagendra Modadugu, and Dan Boneh.
On the effectiveness of address-space randomiza-
tion. In Proceedings of the 11th ACM conference
on Computer and communications security, pages
298-307. ACM, 2004.

Alexander Sotirov and Mark Dowd. Bypassing
browser memory protections in Windows Vista.
Blackhat USA, 2008.

Gene Novark and Emery D. Berger. DieHarder:
securing the heap. In Proceedings of the 17th
ACM conference on Computer and communica-
tions security, pages 573-584. ACM, 2010.

Will Dietz, Peng Li, John Regehr, and Vikram
Adve. Understanding integer overflow in C/C++.
In Proceedings of the 34th International Con-
ference on Software Engineering, pages 760-770.
IEEE Press, 2012.

Scott M. Pike, Bruce W. Weide, and Joseph E.
Hollingsworth. Checkmate: cornering C++ dy-
namic memory errors with checked pointers. In
ACM SIGCSE Bulletin, volume 32, pages 352—
356. ACM, 2000.

Vivek Ramach and ran.
Hack of the
Shellcode

SecurityTube.net
Day: Demystifying the Ex-
(Stack Method). URL

ecve

[12]

http://hackoftheday.securitytube.net/
2013/04/demystifying-execve-shellcode-
stack.html.

Charlie Miller and Vincenzo Iozzo. Fun
and games with Mac OS X and iPhone
payloads.  BlackHat FEurope, 2009. URL
http://trafficlight.bitdefender.com/
info?url=http%3A//reverse.put.as/
wp-content/uploads/2011/06/BlackHat-
Europe-2009-Miller-Iozzo-0SX-IPhone-
Payloads-whitepaper.pdf&language=en_US.
Collin Mulliner and Charlie Miller. Inject-
ing SMS messages into smart phones for
security analysis. In USENIX Workshop on
Offensive Technologies (WOOT), 2009. URL
http://trafficlight.bitdefender.com/
info?url=https%3A//wuw.usenix.org/
event/woot09/tech/full_papers/mulliner.
pdf&language=en_US.

M. Keith. Android 2.0-2.1 Reverse Shell Exploit,
2010.

Ralf-Philipp Weinmann. All Your Baseband Are
Belong To Us. hack. lu, 2010.

Zi-Shun Huang and lan G. Harris. Return-
oriented vulnerabilities in ARM executables. In
Homeland Security (HST), 2012 IEEE Confer-
ence on Technologies for, pages 1-6. IEEE, 2012.
Joshua J. Drake, Zach Lanier, Collin Mulliner,
Pau Oliva Fora, Stephen A. Ridley, and Georg
Wicherski. Android Hacker’s Handbook. John
Wiley & Sons, 2014.

Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, and Marcel Winandy. Return-oriented
programming without returns on ARM. System
Security Lab-Ruhr University Bochum, Tech. Rep,
2010.

F. Aminmansour and H.R. Shahriari. Patulous
Code Reuse Attack: A novel code reuse attack
on ARM architecture (A proof of concept on
Android OS). In 2015 12th International Iranian
Society of Cryptology Conference on Information
Security and Cryptology (ISCISC), pages 104—
109, September 2015. doi: 10.1109/ISCISC.2015.
7387906.

David Seal. ARM architecture reference manual.
Pearson Education, 2001.

Richard Earnshaw. Procedure call standard for
the ARM architecture. ARM Limited, October,
2003.

Pritesh. Android OS Architecture - Android Tuto-
rials - c4learn.com. URL http://www.c4learn.
com/android/android-os-architecture/.
Aleph One. Smashing the stack for fun and profit.
Phrack magazine, 7(49):14-16, 1996.

Stack Shield. A stack smashing technique protec-

tion tool for Linuz. 2011.
@D
[SeCure



http://hackoftheday.securitytube.net/2013/04/demystifying-execve-shellcode-stack.html
http://hackoftheday.securitytube.net/2013/04/demystifying-execve-shellcode-stack.html
http://hackoftheday.securitytube.net/2013/04/demystifying-execve-shellcode-stack.html
http://trafficlight.bitdefender.com/info?url=http%3A//reverse.put.as/wp-content/uploads/2011/06/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=http%3A//reverse.put.as/wp-content/uploads/2011/06/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=http%3A//reverse.put.as/wp-content/uploads/2011/06/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=http%3A//reverse.put.as/wp-content/uploads/2011/06/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=http%3A//reverse.put.as/wp-content/uploads/2011/06/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=https%3A//www.usenix.org/event/woot09/tech/full_papers/mulliner.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=https%3A//www.usenix.org/event/woot09/tech/full_papers/mulliner.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=https%3A//www.usenix.org/event/woot09/tech/full_papers/mulliner.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=https%3A//www.usenix.org/event/woot09/tech/full_papers/mulliner.pdf&language=en_US
http://www.c4learn.com/android/android-os-architecture/
http://www.c4learn.com/android/android-os-architecture/

[24] Ali-Akbar Sadeghi, Farzane Aminmansour, and
Hamid-Reza Shahriari. Tazhi: A novel technique
for hunting trampoline gadgets of jump oriented
programming (A class of code reuse attacks). In
Information Security and Cryptology (ISCISC),
2014 11th International ISC Conference on, pages
21-26. IEEE, 2014.

[25] Ali-Akbar Sadeghi, Farzane Aminmansour, and

HamidReza Shahriari. Tiny Jump-oriented Pro-

gramming Attack (A Class of Code Reuse At-

tacks). In 12th International ISC Conference on

Information Security and Cryptology (ISCISC),

Guilan, ITran, 2015.

Hovav Shacham. The geometry of innocent flesh

on the bone: Return-into-libc without function

calls (on the x86). In Proceedings of the 14th

ACM conference on Computer and communica-

tions security, pages 552-561. ACM, 2007.

[27] Jose  Angel Martinez-Lorenzo, Yolanda
Rodriguez-Vaqueiro, Carey Rappaport, Os-
car Rubinos Lopez, Antonio Garcia Pino,
Zi-Shun Huang, Ian G. Harris, Lance Fiondella,
Swapna Gokhale, Nicholas Lownes, and others.
SUPPLEMENT NO. 6: APRIL 2013. URL
http://trafficlight.bitdefender.com/
info?url=https¥%3A//www.1llis.dhs.gov/
sites/default/files/HSAJ_2012B_IEEE_
Supplement.pdf&language=en_US.

[28] Gang Tan and Jason Croft. An Empirical Security
Study of the Native Code in the JDK. In Useniz
Security Symposium, pages 365—-378, 2008.

[29] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel
Winandy. ROPdefender: A detection tool to
defend against return-oriented programming at-
tacks. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications
Security, pages 40-51. ACM, 2011.

[30] ZhiJun Huang, Tao Zheng, and Jia Liu. A dy-
namic detective method against ROP attack on
ARM platform. In Proceedings of the Second In-
ternational Workshop on Software Engineering
for Embedded Systems, pages 51-57. IEEE Press,
2012.

[26

ISeGure@

Aggrandizing the Beast’s Limbs: Patulous Code Reuse Attack on ARM Architecture — F. Aminmansour et al.

Farzane Aminmansour is gradu-
ated from the department of com-
puter engineering and information
technology, Amirkabir University of
Technology with a master’s degree in
2016. She received her bachelor’s de-
gree in information technology from
University of Isfahan in 2013. Her research interests in-
clude information security, especially low-level system
and software security, mobile system and application
security, and malware analysis.

Hamid Reza Shahriari is currently
an assistant professor in the depart-
ment of computer engineering and in-
formation technology at Amirkabir
/ University of Technology. He received
{. his Ph.D. in computer engineering

from Sharif University of Technology
in 2007. His research interests include information
security, especially software vulnerability analysis, se-

curity in e-commerce, trust and reputation models,
and database security.



http://trafficlight.bitdefender.com/info?url=https%3A//www.llis.dhs.gov/sites/default/files/HSAJ_2012B_IEEE_Supplement.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=https%3A//www.llis.dhs.gov/sites/default/files/HSAJ_2012B_IEEE_Supplement.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=https%3A//www.llis.dhs.gov/sites/default/files/HSAJ_2012B_IEEE_Supplement.pdf&language=en_US
http://trafficlight.bitdefender.com/info?url=https%3A//www.llis.dhs.gov/sites/default/files/HSAJ_2012B_IEEE_Supplement.pdf&language=en_US

	1 Introduction
	1.1 Our contribution
	1.2 Outline

	2 BACKGROUND
	2.1 An Overview on ARM Architecture
	2.2 Android Software Stack

	3 Related Work
	3.1 Return to Zero Protection
	3.2 Return Oriented Programming
	3.3 BLX-Attack

	4 Patulous Code Reuse Attack on ARM
	4.1 Popping Values into all Necessary Registers
	4.2 Loading Registers with Appropriate Values
	4.3 Data Processing Operations as PC Modifiers
	4.4 Branch instructions
	4.5 Combined Attack Model
	4.6 PCRA versus Classical CRA
	4.7 A sample set of useful gadgets

	5 Instantiation In Android KitKat IN ANDROID KITKAT
	5.1 Adversary Model
	5.2 Finding PCRA gadgets
	5.3 Launching the Attack

	6 Conclusion

