
ISeCure
The ISC Int'l Journal of
Information Security

January 2019, Volume 11, Number 1 (pp. 15–34)

http://www.isecure-journal.org

SESOS: AVerifiable Searchable Outsourcing Scheme for Ordered

StructuredData in Cloud Computing

Javad Ghareh Chamani 1,2,∗, Mohammad Sadeq Dousti 1, Rasool Jalili 1, and
Dimitrios Papadopoulos 2

1Data & Network Security Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
2Hong Kong University of Science and Technology, Hong Kong, China

A R T I C L E I N F O.

Article history:

Received: 13 September 2018

Revised: 18 December 2018

Accepted: 25 January 2019

Published Online: 30 January 2019

Keywords:
Cloud Computing, Data

Outsourcing, Order-Preserving

Encryption, Searchable
Encryption.

A B S T R A C T

While cloud computing is growing at a remarkable speed, privacy issues are

far from being solved. One way to diminish privacy concerns is to store data

on the cloud in encrypted form. However, encryption often hinders useful

computation cloud services. A theoretical approach is to employ the so-called

fully homomorphic encryption, yet the overhead is so high that it is not

considered a viable solution for practical purposes. The next best thing is

to craft special-purpose cryptosystems which support the set of operations

required to be addressed by cloud services. In this paper, we put forward one

such cryptosystem, which supports efficient search over structured data types,

such as timestamps, which are comprised of several segments with well-known

values. The new cryptosystem, called SESOS, provides the ability to execute

LIKE queries, along with the search for exact matches, as well as comparison. In

addition, the extended version, called XSESOS, allows for verifying the integrity

of ciphertexts. The overhead of executing equality and comparison operations is

negligible. The performance of LIKE queries is significantly improved by up to

1370X and the performance of result decryption improved by 520X compared to

existing solutions on a database with merely 100K records.

© 2019 ISC. All rights reserved.

1 Introduction

T he rapid and constant generation of organizational
data complicates storing and management of data

for their owners. While increasing storage capacity is
costly even for small companies, it imposes greater
costs and problems for medium and larger enterprises.
Cloud computing provides storage and computational

∗ Corresponding author.

Email addresses: gharehchamani@ce.sharif.edu (J. Ghareh

Chamani), dousti@ce.sharif.edu (M.S. Dousti),

jalili@sharif.ir (R. Jalili), dipapado@cse.ust.hk (D.
Papadopoulos)

ISSN: 2008-2045 © 2019 ISC. All rights reserved.

resources required to handle outsourced data. In com-
parison to proprietary infrastructure, clouds are sig-
nificantly cheaper for the same degree of availability
and capacity of storage and processing. However, se-
curity and privacy concerns are the main obstacles
of data outsourcing. Although the data owner and
the service provider (SP) often agree on some kind
of privacy statement, the issue still remains. If data
owners store their data as plaintext on cloud servers,
it is possible for the SP to view, analyze, and even sell
the data to third parties. Therefore, the only reliable
solution is to encrypt the outsourced data. However,
fetching and decrypting all data per each query causes
significant communication and performance penalties,

ISeCure

16 SESOS — J. Ghareh Chamani et al.

thus rendering ordinary encryption impractical.

To cope with the issue, many data outsourcing archi-
tectures such as CryptDB [1], Monomi [2] and SDB [3]
were proposed in last seven years, whose aim is to
provide search capability on encrypted data. To this
end, they used different attribute-based encryption
schemes in a unified structure. For instance, CryptDB
used multiple columns to store ciphertexts correspond-
ing to different encryption schemes for each plaintext
value. To execute a search query, only a subset of those
columns were used, and fetching all ciphertexts was
not necessary anymore.

Although using such architectures helps in the exe-
cution of some types of queries, they neither support
all data types, nor adequately cover all operations
in queries. For example, they support timestamps by
converting it to other data types. Even though this
approach solves some types of queries requirement
such as comparison and equality, it cannot support
other types of queries such as LIKE and addition.

There are two possible approaches to solve these
problems: (1) a high-throughput fully-homomorphic
encryption (FHE) scheme [4] which supports all de-
sired mathematical operations on encrypted data, and
(2) a type-dependent encryption scheme. Although
some theoretical efforts were made in the first direc-
tion [5, 6], the proposed FHEs are still far from being
practical. Therefore, many researchers are actively
crafting encryption schemes for specific data types to
address practical requirements.

A common data type which is frequently used in
databases (specially, data warehouses and analytic
systems) is the structured data types, which are com-
posed of several segments with well-known values. For
instance, a timestamp is comprised of the following
segments: year, month, day, hour, minute, second, and
perhaps millisecond or nanosecond. Another example
is a network address which, in case of IPv4, has four
segments (e.g., 192.168.1.1). As explained above,
existing solutions support such data types via type
conversion, such as storing a timestamp as a long int

value. While this approach allows for some types of
queries (such as fetching all fields with a certain value),
it falls short of efficiently executing queries regarding
segment values. For instance, the existing solutions
do not support queries such as “fetch all timestamps
whose month is February.”

1.1 Obvious Ideas Which Fail to Work

There are several seemingly “obvious” solutions for
encrypting structured data types, though careful in-
vestigation reveals inherent issues with such basic
approaches. We will discuss some of these solutions,

and explain their shortcomings, before proposing our
solution.

The easiest encryption scheme for structured data
types is the one already used in the literature: The
structured data type is converted to some simple data
type, and then an order-preserving encryption (OPE)
is applied. For instance, a timestamp T is often con-
verted to a (long) integer by counting the number
of milli-/nano-seconds from some point in time (e.g.,
1970 Jan 1 00:00:00, known as the “Unix epoch”) un-
til T . This conversion gives a number which preserves
the order of dates because of its incremental nature.
Equality and comparison queries can be executed on
converted data after encryption with an OPE algo-
rithm. However, as explained earlier, the structured
data have several segments, and the users may desire
to retrieve specific data according to their constituent
segments. For example, a user may execute a query to
retrieve all record with specific month value. In this
situations, the converted value does not support the
user’s query. Consequently, to execute such queries,
it is required to decrypt all records and filter out un-
matched ones in a trusted location (i.e., at the client
side).

Another solution is to separately encrypt each seg-
ment using an OPE scheme, and then store each ci-
phertext in a separate column. As a result, each value
is scattered in multiple columns. While this method
supports most operations on structured data, a ser-
vice provider (SP) can easily cluster data based on
their individual segments, as OPE supports equality
testing. For instance, the SP can partition timestamps
into 12 clusters based on the OPE-encrypted value of
the “month” column.

Another issue with this approach is that the SP
can recover plaintexts by applying a simple frequency
analysis on each column, as the domain (i.e., the set of
possible values) for each segment is very limited. For
instance, the month segment in a timestamp contains
at most 12 different values. If SP knows a priori that
September is the most frequent month in the database,
he can guess that the most frequent ciphertext in the
month column corresponds to September.

Another solution which may seem applicable is
using a sliding window on structured data segments.
In this method, data is randomly padded prior to
order-preserving encryption (OPE). For Instance,
an IP value such as 192.168.1.5 is converted to
192.168.1.5.R1.R2.R3.R4, and the window slides
from left to right. For instance:

Enc(192.168.1.5.R1) | Enc(168.1.5.R1.R2) |
Enc(1.5.R1.R2.R3) | Enc(5.R1.R2.R3.R4) ,

where Enc is any OPE scheme, and “|” is the concate-

ISeCure

January 2019, Volume 11, Number 1 (pp. 15–34) 17

nation operator. In this method, the comparison be-
tween two segments of plaintext can be easily tested.
As such, LIKE queries is practical on the encrypted
data. The random padding is applied to diversify the
encryption and foil frequency analysis. Yet this kind
of padding is futile: The service provider (SP) can
simply cluster ciphertexts based on the value of their
segments. For example, the SP can sort IP cipher-
texts based on the second octet, and infer equivalent
plaintexts based on a priori knowledge regarding their
distribution.

To eliminate such issue, one may suggest to increase
the randomness in the sliding window—e.g., use only
one plaintext segment in each window and fill the
rest with random padding. However, the problem still
remains: Using OPE properties, the SP can mount
the same attack described above.

1.2 Our Contribution

Evidently, providing a secure and practical solution
for structured data types is not trivial. In this paper,
we propose a new encryption scheme called SESOS
(searchable outsourcing scheme for ordered structured
data), which does not suffer from the mentioned issues.
It supports the execution of different operations such
as LIKE, equality, and comparison on encrypted struc-
tured data. Practical evaluation demonstrates that
SESOS is much faster than previous schemes: It does
not add any overhead to operations such as equality,
comparison, and encryption. On the contrary, SESOS
speeds up the decryption time by yp to 520X and
improves the execution time of queries with LIKE con-
dition by up to 1370X (depending on the percentage
of records fetched).

SESOS can incorporate any order-preserving en-
cryption (OPE) scheme, as well as a novel encryption
scheme called Multi-map Perfectly Secure Cryptosys-
tem (MuPS). The latter is defined in this paper, and
proven to be secure in an information-theoretic frame-
work: MuPS is perfectly secure, and hence a MuPS
ciphertext leaks no information about the plaintext,
even to an infinitely powerful adversary. As a result,
SESOS is as secure as the underlying OPE scheme.

In short, SESOS is an encryption method with the
following properties:

• Preserving the order of plaintexts: This
property is achieved via the underlying OPE
scheme. Therefore, an untrusted cloud service
provider (SP) can execute queries which com-
pare encrypted columns.

• Ability to execute LIKE queries: One of the
most important features of SESOS is its abil-
ity to execute query with LIKE condition on en-

crypted data: SESOS supports queries where the
client wants to fetch structured data whose seg-
ments satisfy a specific condition. For instance,
a query such as SELECT * FROM tbl WHERE date

LIKE ‘‘Feb’’ is supported on the encrypted
date column in the table tbl.

• Very fast execution of LIKE queries and de-
cryption of the results: SESOS significantly
increases the performance of LIKE queries. The
performance gain depends on the fraction of
records fetched, but our analysis shows that a
speed-up of at most 1370X can be expected. The
performance of LIKE queries is important mostly
in data warehouses and analytic systems which
have a huge number of timestamp data. Further-
more, because of using simple operation such as
lookup, it improves the decryption performance
up to 520X.

• Execution of equality and range queries
with negligible overhead: SESOS provides
the ability to execute equality and range queries
over encrypted data. This feature has negligible
overhead compared to existing methods.

• Verifiability of ciphertext: SESOS makes it
possible to verify the integrity of the returned
ciphertexts. This is due to using two underly-
ing encryption schemes: OPE and MuPS. The
client can verify the integrity of ciphertexts by
decrypting each scheme separately, and compar-
ing the results.

• Provable security: As described earlier, many
obvious solutions which solve one problem by
creating a bigger one, such as compromising
the security, cab be proposed. In this paper, we
prove the prefect secrecy of MuPS. As a result,
SESOS is shown to be as secure as the underlying
OPE scheme, which can be selected based on
the security and efficiency requirements.

1.3 Organization

The rest of this paper is organized as follows. Section 2
surveys the related work. Section 3 describes some pre-
liminaries and definitions. Section 4 presents SESOS
and gives some examples. Section 5 evaluates the per-
formance of SESOS. Finally, Section 7 concludes the
paper.

2 RelatedWork

Research in data outsourcing has two directions: Ar-
chitectures and encryption schemes. Below, we briefly
review previous work in each category.

ISeCure

18 SESOS — J. Ghareh Chamani et al.

2.1 Architectures

CryptDB [1, 7] is one of the most popular architec-
tures proposed in recent years. It can be considered as
the first practical architecture that used encryption
for outsourcing data in the cloud. CryptDB influenced
subsequent database outsourcing architectures. It uses
several encryption schemes in a unified “onion” struc-
ture to support different operations on encrypted data.
Although CryptDB seems to be practical, it suffers
from some important issues such as the lack of sup-
porting complex queries or lazy encryption methods.

Monomi [2] was introduced by some authors of
CryptDB in 2013. They improved CryptDB through
a planner and an optimizer to support complex and
nested queries. Although Monomi fixed some issues
of CryptDB, some problems such as supporting times-
tamps still exist.

In 2015, SDB was proposed as an alternative to
CryptDB’s trend [3]. Its architecture is based on math-
ematical properties of operations, and supports some
basic operations as well as a planner for executing
nested queries. Similar to CryptDB and Monomi,
some data types and queries are still unsupported in
SDB.

Although some other frameworks and architectures
such as [8, 9] exist in the literature, they did not have
significant impact on the trend of this field. We ignore
their details in this survey.

2.2 Encryption Schemes

In recent years, several encryption schemes were
introduced for data outsourcing. Several of these
schemes [10, 11] use indexing information along
with ciphertexts. Indexing can be done in different
ways such as encryption, segmentation, hashing, or
order-preserving encryptions [12–14].

Another category of encryption schemes uses se-
cret sharing [15, 16] to split ciphertexts among several
service providers (SPs). This category requires sev-
eral non-collaborative SPs to preclude the recovery
of plaintexts. This requirement is only applicable for
large enterprises; small businesses are unable to pay
more than one SP.

In 2005, Aggarwal suggested data partitioning to
provide privacy in data outsourcing [17]. The basic
idea is that most of the existing data are not private
in themselves. However, the privacy is required when
the data is stored in conjunction with other data. As
an example, “salary” is just a numeric value, but it
may be considered private only when it is stored along
with the name of an employee. Thus, by storing each
part of data separately in different places, privacy can

be achieved. This method has the same problem as
secret sharing, as it requires more than one SP.

There has been lots of work on order-preserving
encryption (OPE) schemes both in the research com-
munity [15, 18, 19] and in industry [20, 21]. Some tried
to propose new methods while the others improved
the existing ones. In 2013, Raluca proposed mOPE
as an ideal secure OPE [22]. It was based on mutable
ciphertexts needed for ideal security. This scheme was
used in CryptDB to provide comparison capability for
users. Two years later, Hwang et al. [23] suggested
Fast OPE (FOPE) which was significantly faster than
mOPE. Kerschbaum [24] conducted a research to pre-
vent service providers (SPs) from frequency analysis
on OPEs. The idea was to introduce some random-
ness in the encryption mechanism to change the deter-
ministic property of OPE encryption. Although this
method increased the security, it reduced the perfor-
mance in comparison to the previous schemes.

2.3 Searchable Encryption

Searching on encrypted texts was first examined
by Song et al [25] in 2000. They proposed a non-
interactive method for searching on encrypted texts.
Non-interactive search means that the client gives
his queries to the system at the setup time and will
not interact with the system anymore. Although this
definition is not practical in a real system, it was the
base for future research.
In 2006, Curtmola et al proposed an improved def-
inition and efficient construction for searching on
encrypted texts [26]. They proposed an adaptive SSE
scheme in addition to a non-adaptive one which was
more practical in real applications. However, it still
had some issues which prevented users from using
it. The main issue was dynamism which means the
ability of users to add and remove keywords to the
currently existing database or files. In 2012, Kamara
et al proposed the first dynamic SSE which supported
the insertion and deletion of keywords [27]. From that
time, lots of work has been done to improve the per-
formance of existing dynamic SSE schemes [28–34].

3 Preliminaries

Let S be a finite set and n be a natural number. Then
|S| denotes the number of elements in S, and Sn

denotes the n-time Cartesian product of S by itself.
Specifically, the n-time Cartesian product of {0, 1},
denoted as {0, 1}n, has a special meaning: The set of
all binary strings of length n. For any binary string
s ∈ {0, 1}n, the length of s is denoted by |s|, and is
equal to n. If s1, . . . , st are t string values, s1 | · · · | st
shows their concatenation.

We use ~v to suggest that v is a vector. An exclama-

ISeCure

January 2019, Volume 11, Number 1 (pp. 15–34) 19

tionmark is used to signify factorial: n!
def
= 1×2×· · ·×n.

The symbol ⊥ is used to show the output of an algo-
rithm upon failed. We use λ to denote the security
parameter. It is customary to provide algorithms with
λ in unary notation 1λ. This is because, by conven-
tion, an algorithm’s running time is measured in the
length of its input, and |1λ| = λ.

Let Genprf (1λ) ∈ {0, 1}λ be a key generation func-

tion, and G : {0, 1}λ × {0, 1}` × {0, 1}`′ → {0, 1}`′′

be a pseudorandom function (PRF) family. GK(P, x)
denotes G(K,P, x). G is a secure PRF family if
for all PPT adversaries Adv, |Pr[K ← Genprf (1λ);

AdvGK(·)(1λ) = 1] − Pr[AdvR(·)(1λ) = 1]| ≤ v(λ),
where R : {0, 1}` → {0, 1}`′ is a truly random func-
tion.

Definition 1 (Order-Preserving Encryption).
A quintuple Πope = (Gen,Enc,Dec,P, C) is called an
order-preserving encryption (OPE) if it satisfies the
following properties:

• KeyGeneration:On input the security param-
eter 1λ, the efficient key generation algorithm
Gen outputs the key k.

• Encryption: On input the key k output by Gen
and a plaintext p ∈ P, the efficient encryption
algorithm Enc outputs a ciphertext c ∈ C.

• Decryption: On input the key k output by Gen
and a ciphertext c ∈ C, the efficient decryption
algorithm Dec outputs a plaintext p ∈ P.

• Order Preservation: Let ≤ be a total order
on P, and � be a total order on C. For any key
k output by Gen, and all plaintexts p1, p2 ∈ P,
it is required that:

p1 ≤ p2 ⇔ Enc(k, p1) � Enc(k, p2) .

Correctness: For any key k output by Gen, and all
plaintexts p ∈ P, it is required that:

Dec(k,Enc(k, p)) = p .

Security: There are several notions of security for
OPE. Examples include IND-O-CPA and POPF-
CCA [35], (r, q+ 1)-WOW and (r, q+ 1)-WDOW [18],
and (X , θ, q)-indistinguishability [36]. We do not in-
vestigate these definitions here. Our proposed scheme
can use any OPE, and inherits its security under the
same definition.

Remark 1. In this paper, we will assume that C =
{0, 1}κ for some positive integer κ. This is just for
notational simplicity, as the algorithms can easily split
concatenated strings based on their lengths (looking
ahead, Algorithm 3 uses this property).

For a suitable value of κ, any OPE ciphertext can be
padded by enough zeros (to the left) so that the length
of its binary representation is κ. Therefore, there is

no loss of generality in assuming that C = {0, 1}κ.

4 The Proposed Encryption Scheme

The proposed encryption scheme, called SESOS, com-
bines two types of encryption schemes:

(1) Any order-preserving encryption (OPE) scheme
as defined in Definition 1;

(2) A novel encryption scheme called MuPS.

Section 4.1 defines MuPS formally, demonstrates
the proper way to select its parameters based on the
dataset, and proves that MuPS achieves perfect se-
crecy. In Section 4.2, SESOS is formally defined and
we explain how MuPS is combined with an arbitary
OPE scheme to provide the final encryption scheme.
We also show how SESOS achieves the desired prop-
erties such as executing comparison and LIKE queries.
Finally, Section 4.3 describes a numerical example to
clarify SESOS operation.

4.1 MuPS: A Multi-map Perfectly Secure
Cryptosystem

Let P and C denote the set of plaintexts and cipher-
texts, respectively. The encryption function Enc, pro-
posed in this section, is a stateful one. A single plain-
text might be mapped into one of m ciphertexts, de-
pending on the state (as well as the key). Furthermore,
we will prove in Section 4.1.3 that the cryptosystem
is perfectly secure. For these reasons, it is called a
Multi-map Perfectly Secure (MuPS) cryptosystem.

Let us explain, on an intuitive level, two design
choices regarding MuPS:

(1) The decryption function Dec of MuPS is state-
less. Otherwise, the encryption state must be
saved together with the ciphertext in order to
make decryption possible. For instance, consider
the One-Time Pad (OTP), which is a perfectly
secure cryptosystem, whose encryption function
is defined as the exclusive-or (XOR) of the key
and plaintext: Enc(k, p) = k ⊕ p. OTP can be
considered as a stateful encryption, as exempli-
fied next.

Let k = 0001101101100 . . . 01. We first en-
crypt p1 = 11000. To this end, a prefix of k with
length |p1| = 5 is chosen: k1 = 00011, and c1 =
k1 ⊕ p1 = 11011. Next, let us encrypt p2 = 101.
The rules of OTP disallows reusing the same key
bits. Therefore, the five used bits are ignored.
Let k′ be k with the first five bits removed. To
encrypt p2, a prefix of k′ with length |p2| = 3 is
chosen: k2 = 011, and c2 = k2 ⊕ p2 = 110. The
same approach is taken for other plaintexts.

In stateful OTP, the state is the index of the
first fresh (unused) key bit. Initially, this index is

ISeCure

20 SESOS — J. Ghareh Chamani et al.

0, and it increases by the length of each plaintext.
However, the decryption function of OTP is

stateful as well: To decrypt a ciphertext, one
must know which part of the key to use.

(2) MuPS never maps a plaintext to the same pre-
viously generated ciphertext. Otherwise, the ad-
versary can detect that some plaintext is re-
peated, which is in sharp contrast to perfect se-
crecy because according to the perfect secrecy
definition, the ciphertexts should not reveal any
information about the plaintext while such re-
peatation reveals that an already existing plain-
text is encrypted again.

One might argue that why OTP can map a
plaintext to the same ciphertext while maintain-
ing perfect secrecy. For instance, in OTP, 0 can
be encrypted as 0, as 1, and again as 0. This
is because the decryption function of OTP is
stateful, while the decryption function of MuPS
is stateless.

The second property is seemingly a restriction:
MuPS can encrypt a plaintext at mostm times. There-
fore, there is an upper bound n on the total number
of “encryptable” plaintexts. However, as shown in Sec-
tion 4.1.2, m can be picked reasonably to defeat this
restriction for all practical purposes. Moreover, we dis-
cuss in Section 6 an approach to make the restriction
less tight.

MuPS is formally defined in Definition 2. See Sec-
tion 4.1.1 for a toy example.

Definition 2 (MuPS). MuPS is a quintuple
Πmups = (Gen,Enc,Dec,P, C), where Gen, Enc, and
Dec are efficient algorithms, each of which is described
below, while P and C are finite sets. Without loss
of generality and for notational simplicity, we will
assume that C = {0, 1}κ for some positive integer κ. 1

It is assumed that one can enumerate the mem-
bers of P. That is, its members can be indexed as
p1, p2, . . . , p` unambiguously. In order for MuPS to be

non-degenerate, we assume that `
def
= |P| > 1.

MuPS is parameterized by a positive integer m, de-
noting the number of different mappings per plaintext.

It must hold that ` ·m ≤ 2κ, otherwise, key gen-
eration/encryption will be impossible (see below).

1 There are two reasons for this assumption: One is already

explained in Remark 1. The second reason is that the key
generation algorithm Gen requires to sample uniformly from

C, and so C must be passed to it as an argument. However,

if |C| is exponential in λ, it is infeasible to pass it as an
argument to an efficient (i.e., polynomial-time) algorithm, such

as Gen. As a result, one must pass a short (i.e., polynomial in

λ) “description” of C to Gen. This is possible when assuming
C = {0, 1}κ, as in this case, κ fully specifies C, and we will

assume that κ is polynomially bounded in λ.

Furthermore, κ, `, and m must be polynomially
bounded in the security parameter λ.

• Key Generation: On input (1λ,P, κ,m),
the key generation algorithm Gen outputs
(st,K,K−1).

The encryption state is denoted by st. It can
be regarded as a lookup table with ` indices.
st[p] denotes the state value corresponding to
p ∈ P. Initially, all state values are zero.
K is the key, which is also a lookup table

with ` indices. K[p] denotes the key value corre-
sponding to p ∈ P. Contrary to st[p], which is
a numeric value, K[p] is a vector in Cm.

To construct K, the key generation algorithm
uniformly picks ` ·m elements from C = {0, 1}κ
without replacement. The chosen values are
denoted as (c1, . . . , c`·m), where ci is the ith

picked element, and all elements are distinct.
Gen splits (c1, . . . , c`·m) into vectors of length m
each, and assigns the jth vector to K[pj]. That
is,

K[p1] = (c1, . . . , cm)

K[p2] = (cm+1, . . . , c2m)

· · ·
K[p`] = (c(`−1)·m+1, . . . , c`·m)

Notice that here, we used the fact that the el-
ements of P can be indexed unambiguously;
see Definition 2. Denote by K[p][i] the ith com-
ponent of the vector K[p].

Algorithm 1 Encryption algorithm

1: Enc(st,K, p)
2: if st[p] ≥ m
3: return (⊥, st) //Encryption failure

4: st[p]← st[p] + 1 //Update the state

5: c← K[p][st[p]]
6: return (c, st)

The lookup table K−1 is the inverse of K: It
takes a ciphertext c ∈ C, and outputs p ∈ P
such that c is a component of the vector K[p].
That is, K−1[c] = p if there exists p ∈ P and
i ∈ {1, . . . ,m} such that K[p][i] = c. Otherwise,
K−1[c] = ⊥.

• Encryption: On input st, K, and a plaintext
p ∈ P, MuPS encryption function Enc exe-
cutes Algorithm 1. The algorithm is exemplified
in Section 4.1.1.

Notice that the encryption may fail, but we
show in Section 4.1.2 how to pick m such that
the chance of failure is arbitrarily small.

• Decryption: On input K−1 and c ∈ C, MuPS
decryption function Dec simply outputs K−1[c].

ISeCure

January 2019, Volume 11, Number 1 (pp. 15–34) 21

Notice that Dec is stateless, and hence decryp-
tion does not depend on the state. Moreover, it
is not required to show how it decrypts a vector
of ciphertexts.

Algorithm 2 Vector encryption

1: Enc(K, ~p) //~p = (p(1), p(2), . . . , p(n))

2: st← 0 //Initial, all-zero state

3: for i = 1 to n
4: (c(i), st)← Enc(st,K, p(i))
5: if c(i) = ⊥
6: return ⊥ //Encryption failure

7: ~c = (c(1), c(2), . . . , c(n))
8: return ~c

4.1.0.1 Encrypting multiple plaintexts.

One may consider a sequence of n plaintexts
as a vector with n plaintext components: ~p =(
p(1), p(2), . . . , p(n)

)
∈ Pn. Encrypting this vector is

simply equivalent to encrypting each component from
left to right, while updating the state:

Enc(~p)
def
=
(
Enc(p(1)), . . . ,Enc(p(n))

)
.

Notice that the state st and key K are omitted from
the above equation for the sake of readability. A vector
is encryptable if no component in its ciphertext is ⊥.
Algorithm 2 formalizes vector encryption.

4.1.1 A Toy Example

Let P = {0, 1}, and C = {0, 1}3, m = 4, and n = 6.
Notice that ` = 2. Suppose that Gen outputs the
following:

• st[0] = 0 and st[1] = 0.
• K[0] = (Q,E,R,Z) and K[1] = (G,X,D,B),

where Q = 001, E = 101, R = 000, Z = 110,
G = 111, X = 011, D = 100, and B = 010.

• K−1[Q] = K−1[E] = K−1[R] = K−1[Z] =
0 and K−1[G] = K−1[X] = K−1[D] =
K−1[B] = 1.

We next describe how to encrypt a plaintext vector
~p ∈ Pn = {0, 1}6. Let ~p = (0, 0, 0, 1, 1, 1):

(1) p(1) = 0: The encryption algorithm veri-
fies that 0 = st[p(1)] < m = 4, which is
true. Next, st[p(1)] is incremented by 1, re-
sulting in st[p(1)] = 1. Finally, c(1) is set to
K[p(1)][st[p(1)]] = K[0][1] = Q.

(2) p(2) = 0: The encryption algorithm veri-
fies that 1 = st[p(2)] < m = 4, which is
true. Next, st[p(2)] is incremented by 1, re-
sulting in st[p(2)] = 2. Finally, c(2) is set to
K[p(2)][st[p(2)]] = K[0][2] = E.

(3) p(3) = 0: The encryption algorithm veri-
fies that 2 = st[p(3)] < m = 4, which is
true. Next, st[p(3)] is incremented by 1, re-
sulting in st[p(3)] = 3. Finally, c(3) is set to
K[p(3)][st[p(3)]] = K[0][3] = R.

(4) p(4) = 1: The encryption algorithm veri-
fies that 0 = st[p(4)] < m = 4, which is
true. Next, st[p(4)] is incremented by 1, re-
sulting in st[p(4)] = 1. Finally, c(4) is set to
K[p(4)][st[p(4)]] = K[1][1] = G.

(5) p(5) = 1: The encryption algorithm veri-
fies that 1 = st[p(5)] < m = 4, which is
true. Next, st[p(5)] is incremented by 1, re-
sulting in st[p(5)] = 2. Finally, c(5) is set to
K[p(5)][st[p(5)]] = K[1][2] = X.

(6) p(6) = 1: The encryption algorithm veri-
fies that 2 = st[p(6)] < m = 4, which is
true. Next, st[p(6)] is incremented by 1, re-
sulting in st[p(6)] = 3. Finally, c(6) is set to
K[p(6)][st[p(6)]] = K[1][3] = D.

Ultimately, the encryption function outputs ~c =
(c(1), . . . , c(6)) = (Q,E,R,G,X,D).

For the second example, consider encrypting ~p′ =
(0, 1, 0, 0, 1, 0). Following the same steps, one can see

that ~c′ = (Q,G,E,R,X,Z).

For the final example, let us consider an “unencrypt-
able” vector: ~p′′ = (0, 0, 0, 0, 0, 1). As the number of 0s
is more than m = 4, the encryption fails for the fifth
component p′′(5). This is because when encrypting
this component, st[p′′(5)] = 4, which does not pass the
condition st[p′′(5)] < m. As a result, Enc outputs ⊥.

It is fairly easy to demonstrate decryption. For
instance, ~c = (Q,E,R,G,X,D) is decrypted as ~p =(
K−1[Q],K−1[E],K−1[R],K−1[G],K−1[X],K−1[D]

)
=

(0, 0, 0, 1, 1, 1), which is correct according to what we
computed above.

4.1.2 Setting the Parameter m for MuPS

For fixed values of ` and n, the parameter m deter-
mines the number of encryptable plaintext vectors.
If m < n/`, no plaintext vector of length n can be
encrypted. For instance, if P = {0, 1} and m = 2, we
cannot encrypt plaintext vectors of length n = 5, as
the number of mappings per plaintext is not enough.

At the other end of the spectrum, if m ≥ n, any
plaintext vector of length n (or less) is encryptable
by MuPS. However, we want to keep m as small as
possible, since the query complexity on the outsourced
DB is proportional to m.

The goal of this section is to show how to pick m
just above its lower bound (n/`), such that a uni-
formly chosen vector ~p ∈ Pn is encryptable with high

ISeCure

22 SESOS — J. Ghareh Chamani et al.

probability. This is proven in Theorem 1. However,
prior to that proof, we need several notations, as well
as some lemmas.

For i ∈ {1, . . . , n}, let Ui denote a uniform random
variable over P. That is, for any p ∈ P, it holds
that Pr[Ui = p] = 1

` . For j ∈ {1, . . . , `}, define the
indicator function Ij(Ui) as follows:

Ij(Ui)
def
=

{
1 if Ui = pj

0 otherwise

Furthermore, define Xj =
∑n
i=1 Ij(Ui). That is, Xj

counts the number of Uis whose outcome is pj . (Again,
we used the assumption that members of P can be
enumerated; see Definition 2.) SinceXjs are identically
distributed, we may use X to represent any of Xjs
when the index is of no importance.
Lemma 1. X is binomially distributed.

Proof. For x ∈ {0, . . . , n}, we have fX(x)
def
= Pr[X =

x] =
(
n
x

) (
1
`

)n
. Therefore, the probability mass func-

tion (pmf) of X is that of a binomial distribution (for
` = 2).

Corollary 1. X has expectation µX = E[X] = n
`

and variance σ2
X = Var[X] = n 1

` (1− 1
`) = n(`−1)

`2 .

The following useful inequality can be obtained for
ε > 0 by applying the Chernoff bound (e is the base
of the natural logarithm):

Pr [X − µX > ε] ≤ e−ε
2/(2·σ2

X) . (1)

Lemma 2. The random vectorY = (X1, . . . , X`) has
multinomial distribution.

Proof. For x1, . . . , x` ∈ {0, . . . , n} with
∑`
i=1 xi = n,

it holds that:

fY(x1, . . . , x`)
def
= Pr

[
(X1, . . . , X`) = (x1, . . . , x`)

]
=

(
n

x1, . . . , x`

)(
1

`

)n
,

where
(

n
x1,...,x`

)
is the multinomial coefficient defined

as n!
x1!···x`!

. Therefore, the pmf of Y is that of a multi-
nomial distribution.

Next, we prove a lower bound on the probability
that in the random vector Y, no component is greater
than m.
Lemma 3. Define the cumulative distribution

functions (CDFs) FXj
(x)

def
= Pr[Xj ≤ x] and

FY(x1, . . . , x`)
def
= Pr[X1 ≤ x1, . . . , X` ≤ x`]. Then

FY(x1, . . . , x`) ≥ 1−
∑̀
j=1

(
1− FXj

(xj)
)
.

Proof. Let us recast the lemma statement in terms
events: For j ∈ {1, . . . , `}, define Aj as the eventXj ≤
xj . By De Morgan’s laws,

1−Pr

⋂̀
j=1

Ai

 = Pr

⋂̀
j=1

Ai

c = Pr

⋃̀
j=1

Aci

 .
On the other hand, using a union bound :

Pr

⋃̀
j=1

Aci

 ≤ ∑̀
j=1

Pr[Aci] =
∑̀
j=1

(1− Pr[Ai]) .

Therefore,

Pr

⋂̀
j=1

Ai

 ≥ 1−
∑̀
j=1

(1− Pr[Ai]) .

Consequently (
∧

denotes the “logical and” operation):

Pr

∧̀
j=1

(Xj ≤ xj)

 ≥ 1−
∑̀
i=1

(1− Pr[Xj ≤ xj]) ,

as needed.

Corollary 2. For any nonnegative integer m:

FY(m,m, . . . ,m) ≥ 1− ` · (1− FX(m)) . (2)

Theorem 1. Let (st,K,K−1) be the output of
Gen(1λ,P, κ,m), and assume n is such that m > n/`.
The probability that a uniformly chosen vector ~p ∈ Pn
is encryptable by Enc is at least

1− ` · e−
(m`−n)2

2n(`−1) . (3)

Proof. As proven in Lemma 2, if ~p ∈ Pn is picked
uniformly, the vector Y whose components are the
count of each plaintext in ~p follows the multinomial
distribution.

~p is encryptable if no component in ~p is repeated
more than m times. The probability of this event is
FY(m,m, . . . ,m) for a uniform ~p ∈ Pn. Inequality (2)
gives a lower bound for this probability in terms of the
CDF of a binomial random variable. The latter can
be approximated using inequality (1), using µX and
σ2
X as defined in Corollary 1, and with ε = m− n/`:

1− FX(m) = Pr[X > m]

= Pr[X − n/` > ε] ≤ e−ε
2/(2·σ2

X)

= e
− (m−n/`)2

2n(`−1)/`2

= e−
(m`−n)2

2n(`−1) .

Finally, using inequality (2),

FY(m,m, . . . ,m) ≥ 1− ` · (1− FX(m))

≥ 1− ` · e−
(m`−n)2

2n(`−1) .

ISeCure

January 2019, Volume 11, Number 1 (pp. 15–34) 23

Corollary 3. In order for a uniformly chosen vector
~p ∈ Pn to be encryptable with probability δ < 1, the
value of m must be at a few standard deviations away
from the mean (notice that µX and σX are the mean
and standard deviation of the underlying binomial
distribution X, rather than those of the multinomial
distribution Y):

m ≥ n

`
+

√
n(`− 1)

`2
· 2 ln

(
`

1− δ

)

= µX + σX ·

√
2 ln

(
`

1− δ

)
.

This can be proven by simple algebraic manipulation
of inequality (3).

Let us exemplify the result of Corollary 3 with some
examples.

Example 1. Let ` = 3 and n = 100. We already
know that m ≥ n/` ≈ 33.3, and with m = n = 100,
the probability that ~p is encryptable is 1.

Let us now find m such that δ = 0.90. An actual
computation (i.e., without any approximation) shows
that m ≥ 42. Using Corollary 3, we get m ≥ 46.

For δ = 0.99, the actual computation requires m ≥
46, while Corollary 3 asks for m ≥ 50.

In Example 1, we could perform an exact compu-
tation, since the values of n and ` were small. That
said, such a computation took about 10 seconds on a
commodity computer. For larger values, exact com-
putation can become very time consuming. Interest-
ingly, numerical computation becomes infeasible for
the following example, and we have to resort to the
approximation given in Corollary 3.

Example 2. Let ` = 256 and n = 106. This is a real-
world example, where the DB stores a million records,
each of which has 256 possible values (such as a byte).
We already know that m ≥ n/` ≈ 3906.3, and with
m = n = 106, the probability that ~p is encryptable is
1.

Let us now find m such that δ = 0.90. Using Corol-
lary 3, we get m ≥ 4154.

Moreover, for δ = 0.99999, we get m ≥ 4271. No-
tice the huge advantage here: While we need m =
1, 000, 000 to make all vectors encryptable, we merely
need m = 4271 to make over 99.999% of them en-
cryptable.

4.1.3 MuPS is Perfectly Secure

In this section, we prove that MuPS is perfectly secure.
Define Goodnm(P) as the set of vectors ~p ∈ Pn such
that no vector component is repeated more than m

times. This set exactly contains all vectors encryptable
by MuPS with parameters (m,n).

Example 3. For P = {A,B,C}:

Good21(P) =
{
(A,B), (A,C), (B,C), (B,A), (C,A), (C,B)

}
.

Notice that (A,A) /∈ Good21(P), as A is repeated
more than once (m = 1).

The MuPS encryption ~p ∈ Goodnm(P) is not an
arbitrary vector in Cn, as the components in the ci-
phertext vector cannot be repeated. This is the result
of the way MuPS works: No plaintext is ever mapped
to the same ciphertext. Therefore, the encryption of
~p ∈ Goodnm(P) is a vector in Goodn1 (C): That is, the
set of vectors in Cn whose components are repeated
at most once.

Let P be an arbitrary random variable over
Goodnm(P), and define the random variable C over
Goodn1 (C) as follows:

(1) Let ~p ← P. That is, we sample P to get the
plaintext vector ~p ∈ Goodnm(P).

(2) Run MuPS key generation algorithm: (st,K,K−1)
← Gen(1λ,P, κ,m).

(3) Encrypt ~p by running ~c← Enc(st,K, ~p).
(4) Output ~c.

Using the definition of random variables P and C,
the perfect security of MuPS is formalized in Theo-
rem 2. It basically states that if the adversary has a
priori information on the distribution of plaintexts
(i.e., P), and he observes a valid ciphertext vector,
the a posteriori information on the distribution of
plaintexts (i.e., P conditioned on C) does not change.
In other words, observing a valid ciphertext vector
does not entail any information, even to an infinitely
powerful adversary.
Theorem 2 (Perfect Secrecy of MuPS). For all vec-
tors ~p ∈ Goodnm(P) and all vectors ~c ∈ Goodn1 (C):

Pr
[
P = ~p | C = ~c

]
= Pr

[
P = ~p

]
. (4)

Proof. We prove the following property, which is equiv-
alent to perfect secrecy (see [37, Theorem 2.1] for a
proof): For all plaintexts and ciphertexts, the number
of keys mapping the former to the latter must be a
constant (i.e., independent of the actual plaintext or
ciphertext). In terms of MuPS notation, this means
that for all vectors ~p ∈ Goodnm(P) and all vectors ~c ∈
Goodn1 (C), the size of the following set is independent
of both ~p and ~c:

S(~p,~c)
def
= {K | Enc(K, ~p) = ~c } .

Recall from Definition 2 that K is a uniformly picks
` ·m elements from C = {0, 1}κ without replacement.
Therefore, K ∈ Good`·m1 (C). For i ∈ {1, . . . , n}, the

ISeCure

24 SESOS — J. Ghareh Chamani et al.

fmap

Segment 1

Segment 2

...

Segment t

Order Preserving

Encryption(OPE)
Cope

MuPS Encryption C1

C2

MuPS Encryption

Ct

...

...

C
o

p
e|

 C
1
 |

 C
2
 |

 …
 |
 C

t

MuPS Encryption

Figure 1. Graphical representation of SESOS encryption function. In the upper part of the diagram, the order-preserving encryption
(OPE) of the converted value of plaintext (using fmap) is calculated. In the lower part, each segment is encrypted by MuPS. Finally,

all ciphertexts are concatenated.

ith component of ~p and ~c fixes an entry in K. That is,

K
[
~p (i)

][
st
[
~p (i)

]]
= ~c (i). Therefore, S(~p,~c) is the set

of keys with n fixed entries, and ` ·m− n free entries.
Consequently,

|S(~p,~c)| = P
(
2κ − n, ` ·m− n

)
,

where P (y, x)
def
= y!

(y−x)! is the number of x-

permutations of y. The theorem is proven by noting
that |S(~p,~c)| is independent of both ~p and ~c.

4.2 SESOS: A Searchable Outsourcing
Scheme for Ordered Structured Data

Before formalizing SESOS, let us show how a “date” is
encrypted. The date is composed of year (Y), month
(M), and day (D) segments. Here, we assume that
Y ∈ {1970, . . . , 3000}, while M ∈ {1, . . . , 12} and
D ∈ {1, . . . , 31}. The date value can also be converted
to a 32-bit integer S by counting the number of days
from the Unix epoch. Here, S ∈ {0, 1}32.

SESOS encrypts a date value as follows: It uses
an OPE scheme to encrypt the “converted” value of
date, S. Furthermore, it encrypts each segment (Y ,M ,
and D) using an independent instantiation of MuPS.
Finally, SESOS concatenates the resulting ciphertexts.
The process can be described informally as:

OPE(S) | MuPS(Y) | MuPS(M) | MuPS(D)

Decryption works the other way round: The ciphertext
is decomposed into its constituent parts (it is assumed
that this can be done in a unique way). The first part

of the ciphertext is decrypted using OPE decryption
function, while each remaining part is decrypted using
MuPS decryption function for verification procedure.
The concept is formalized in Definition 3.

Definition 3 (SESOS Encryption Scheme). Let
Πope = (Genope,Encope,Decope,Pope, Cope) be any OPE
encryption scheme, and Πi = (Geni,Enci,Deci,Pi, Ci)
be a MuPS encryption scheme for i ∈ {1, . . . , t}.

A SESOS encryption scheme using Πope with t
segments over P1, . . . ,Pt is a quintuple Πsesos =
(Gen,Enc,Dec,P, C) defined as follows:

• Plaintext Space: P def
= P1 × · · · × Pt.

• Ciphertext Space: C def
= Cope × C1 × · · · × Ct.

By definition of the underlying schemes, C =

{0, 1}κ for κ
def
= κope + κ1 + · · ·+ κt.

• Key Generation: On input (where κ and m
are as per Definition 2):(

1λ, {Pi, κi,mi}i=1,...,t

)
,

the output of Gen is defined as (stsesos, ksesos).
Here, stsesos is defined as (st1, . . . , stt), and

ksesos
def
=
(
kope, {Ki,K

−1
i }i=1,...,t

)
,

where kope ← Genope(1
λ), and for i ∈ {1, . . . , t},

(sti,Ki,K
−1
i)← Geni(1

λ,Pi, κi,mi) .

• Encryption: SESOS first maps the plaintext
p = (p1, . . . , pt) ∈ P onto Πope by applying a

specific bijection fmap : P → Pope. Let pope
def
=

fmap(p).

ISeCure

January 2019, Volume 11, Number 1 (pp. 15–34) 25

On input stsesos, ksesos, and a plaintext p, the
SESOS encryption function Enc outputs the up-

dated state st′sesos
def
= (st′1, . . . , st

′
t), as well as

the ciphertext c
def
= cope | c1 | · · · | ct (which is

the concatenation 2 of the corresponding cipher-
texts). Here, cope ← Encope(kope, pope), and

(ci, st
′
i)← Enci(sti,Ki, pi) ,

for i ∈ {1, . . . , t}.
The encryption procedure is graphically

demonstrated in Figure 1.
• Decryption: On input ksesos, and a ciphertext
c = cope | c1 | . . . | ct ∈ C, the SESOS decryp-
tion function Dec outputs p = (p1, . . . , pt) ∈ P.
While the plaintext can be computed by either
of the following strategies, the second strategy
is much more efficient (see Section 5.1.2):
(a) Decrypting OPE: Let pope ← Dec(kope,

cope), and output the plaintext by inverting
pope under the bijection fmap. That is, p←
f−1map(pope).

(b) Decrypting MuPS: Decrypt individual
MuPS by invoking Deci on each ci for i ∈
{1, . . . , t}. That is, pi ← Deci(K

−1
i , ci).

We define the Extended SESOS (XSESOS)
as SESOS with verification: Let pa and pb be the
plaintexts computed using strategies (a) and (b),
respectively. XSESOS decrypts each ciphertext
using both strategies, and outputs ⊥ if pa 6= pb,
and outputs p = pa = pb otherwise.

4.2.1 Executing Comparison and Equality
Queries

One of the main features of SESOS is its ability to
preserve the order of plaintexts due to the underlying
OPE scheme 3 . As a result, queries with comparison
and equality conditions can be executed by the service
provider (SP) over the encrypted data. To this end,
it is required to separate the cope part of ciphertexts.
This can be achieved using the SUBSTRING (str, pos,
len) function of SQL, which returns len characters
of str starting from the position pos. Consequently,
cope can be obtained from a SESOS ciphertext c by:

cope = SUBSTRING(c, 0, κope) .

Using the following property, the SP can compare
two existing ciphertexts with each other:

p1 ≤ p2 ⇐⇒ c1ope � c2ope

2 Although storing each segment of the ciphertext in its own

column is conceivable, it may be very hard to compile nested

SQL queries into a query which is suitable for encrypted data.
3 If the user uses a randomized OPE scheme in SESOS, then
he has to use the comparison and equality conditions which

are provided by the scheme

As an example, suppose that the column reg date

contains the registration date for users. The following
SQL query retrieves all users who have registered
after 2000/01/01, or have registered on 1998/05/26,
or their registration date is after their wedding date.
The first two conditions demonstrate comparison with
specific values, while the last condition shows the
comparison between two encrypted columns.

SELECT ∗ FROM t b l WHERE
(reg da t e > ’2000/01/01 ’) or
(r eg da t e = ’1998/05/26 ’) or
(r eg da t e > wedding date) ;

In order for the SP to be able to execute the query,
the client software should replace the conditions as
follows:

SELECT ∗ FROM tb l WHERE

(SUBSTRING(reg date , 0 , $\kappa \ope$)
> $\Enc \ope$ ($k \ope$, ’ 2000/01/01 ’)) or

(SUBSTRING(reg date , 0 , $\kappa \ope$) =

$\Enc \ope$ ($k \ope$, ’ 1998/05/26 ’)) or
(SUBSTRING(reg date , 0 , $\kappa \ope$) >

SUBSTRING(wedding date , 0 , $\kappa \ope$)) ;

Algorithm 3 Client-Side Compilation of the WHERE

Clause in SQL Queries.

1: ConvertQuery(query)
2: pairs← ExtractSegmentNoAndTheirValues(q−

uery //segment number/value pairs

3: for each (i, p) ∈ pairs
4: (pos, len)← FindTarget(i) //position and

length of the target segment

5: newCond ←
“SUBSTRING(col, pos, len) IN Ki[p]” //col is the

target column in query

6: query ← ReplaceOldConditionWithNewOne
(query,newCond)

7: return query

4.2.2 Executing LIKE queries

In previous OPE schemes, execution of queries with
one or more LIKE conditions required the retrieval
of all data, and decryption and filtering them at the
client side. SESOS, however, can execute LIKE con-
ditions on segments of structured data (the number
of segments can be increased to provide fine grain
search capability). Let us describe the steps required
by the client software to prepare such queries for exe-
cution on the server side (see Algorithm 3). We will
use the following simple SQL query to demonstrate
the concepts:

SELECT ∗ FROM tb l WHERE reg dat e LIKE ’%Feb% ’;

ISeCure

26 SESOS — J. Ghareh Chamani et al.

The first step is to find out the segment(s) of
the structured data which can potentially be the
target of the given query. This can be done by
comparing the given pattern (e.g., '%Feb%') with
the domain of each data segment. In our exam-
ple, the pattern only matches the domain for the
“month” segment, which is the second segment in
a six-segment timestamp format (containing years,
months, days, hours, minutes, and seconds). Let
ExtractSegmentNoAndTheirValues(·) be a
function which, on input the query, returns a list of
pairs (i, p), where i is the segment number, and p is
its value. In the example above, this function returns
a list with a single pair: {(2, Feb)}.

Next, the algorithm should iterate over the list,
and find the “target” for each segment number. By
target, we mean the parameters to be passed to SQL
SUBSTRING function (the starting position pos, and the
length len). The following pseudocode demonstrates
this concept:

(pos, len)← FindTarget(i) .

In our example, i = 2. Therefore, pos = κope +κ1 and
len = κ2.

Furthermore, it is required to transform each plain-
text value p into the corresponding vector of possible
ciphertexts. This vector is exactly Ki[p], where Ki

is the MuPS key for segment i. For instance, assume
that Feb can be mapped to vector (423, 665). Conse-
quently, the compiled query will be:

SELECT ∗ FROM tb l WHERE SUBSTRING(reg date ,
$\kappa \ope + \kappa 1$, $\kappa 2$) IN

(423 , 665) ;

The function ReplaceOldConditionWith-
NewOne is responsible with replacing the old condi-
tion in a WHERE clause with the new one. Algorithm 3
summarizes the pseudocode for compilation of LIKE
queries.

4.3 A Numerical Example

Timestamp is one of the most popular structured
data types where SESOS is applicable. As described
earlier, this data type has six different segments (years,
months, days, hours, minutes, and seconds). In this
section, we exemplify SESOS for the timestamp 2002

Feb 23 18:50:07 to clarify the proposed encryption
method.

SESOS generates random mappings for each seg-
ment. We will use the mappings shown in Figure 2 as
an example. It should be noted that this example is
for demonstration purposes only.

4.3.1 Encryption

The first step in encryption of a timestamp value is
to map it to some value in the domain of the OPE
scheme (using fmap in Definition 3). In this example,
fmap computes the number of seconds passed since
the Unix epoch. In our example, the output is pope =
1014490207.

The first part of ciphertext (cope) is computed
by encrypting pope by an order-preserving encryp-
tion (OPE) scheme, which in our example is: cope =
345347336788722327395922.

Next, it is required to encrypt each segment of plain-
text with MuPS. Assuming this is not the first plain-
text being encrypted, each segment is encrypted based
on some hypothetical state as follows (cf. Figure 2):

2002 → 658, Feb → 143, 23 → 645,

18 → 240, 59 → 321, 7 → 023 .

The ciphertext is generated as the concatenation of
the all partial ciphertexts: c = 34534733678872232

7395922658143645240321023.

4.3.2 Decryption

Decrypting a given ciphertext requires splitting the
ciphertext into its constituent segments, which can
be done according to values of κ for each segment. In
the example above, κope = 24, and κ1 = · · · = κ6 = 3.
For convenience, this example allows κs to denote
the number of digits rather than the number of bits.
Therefore,

cope = 345347336788722327395922,

c1 = 658,

c2 = 143,

c3 = 645,

c4 = 240,

c5 = 321,

c6 = 023 .

As explained in Definition 3, two possible strategies
can be applied for SESOS decryption: (a) Decrypting
cope and applying f−1map to the result, or (b) Decrypt-
ing c1, . . . , c6. Both strategies results in the original
plaintext.

4.3.3 Executing LIKE Queries

Consider the following SQL query

SELECT ∗ FROM tb l WHERE date LIKE ’%:59% ’;

In a timestamp, the pattern %:59% can occur in
two positions: minutes (fifth segment) or seconds
(sixth segment). Therefore, in Algorithm 3, the func-

ISeCure

January 2019, Volume 11, Number 1 (pp. 15–34) 27

1

387

221

298

2

654

143

012

3

006

873

900

...

...

...

...

12

723

013

056

Months Mappings

1

333

520

006

2

009

397

670

...

...

...

...

23

645

032

469

...

...

...

...

Days Mappings

31

065

312

313

0

152

741

004

1

872

115

300

...

...

...

...

18

037

240

333

...

...

...

...

Hours Mappings

23

001

999

624

0

632

252

771

1

169

150

600

...

...

...

...

35

004

357

899

...

...

...

...

Minutes Mappings

59

445

321

791

0

911

110

125

1

722

033

002

...

...

...

...

7

023

712

008

...

...

...

...

Seconds Mappings

59

020

554

225

2001

276

285

999

2002

321

685

753

...

...

...

...

2060

021

133

547

Years Mappings

...

...

...

...

2100

951

020

99

Figure 2. Sample Mapping of Each Segment of the Timestamp Structured Data.

tion ExtractSegmentNoAndTheirValues(·)
outputs the list {(5, 59), (6, 59)}, and the query is
compiled as:

SELECT ∗ FROM tb l WHERE

(SUBSTRING(date , 3 6 , 3) IN (445 ,321 ,791)) or
(SUBSTRING(date , 3 9 , 3) IN (020 , 554 , 225)) ;

Here, 36 = κope + κ1 + · · · + κ4 and 39 = κope +
κ1 + · · · + κ5 are the starting positions for minutes
and seconds, respectively. Furthermore, (445, 321, 791)
and (020, 554, 225) are the corresponding ciphertext
values for 59 as minutes and seconds, respectively
(see Figure 2).

4.4 Reducing the Storage of the Client

With MuPS the size of client storage increases linearly
with the number of each value’s mappings (m). In
this section, we propose an improved version of our
scheme which eliminates such a coefficient from the
storage asymptotic at the client by modifying the
MuPS structure for clients with small storage. To do
that, we use a pseudorandom function with a separate
key for each value in eah segment and store these PRF
keys at the client in a map. Most of the times, the
number of records in a relation is significantly higher
than each segment’s domain size which means that
such improvement reduces storage size significantly.
E.g. consider the number of records in an activity log
table containing timestamps in comparison to possible
values for year, month, or minute in a timestamp field.

In the new version of SESOS, at the beginning of
the system setup, the client executes Genprf (1λ) to
generate a new random key for each segment which we
call them S1

key, S2
key, . . . , Spkey where p is the number

of segments. Next, it sets a counter to zero for each
value of each segment which we denote them by Cnt1S1

,

Cnt2S1
, . . . , Cntk1S1

, Cnt1S2
, Cnt2S2

, . . . , Cntk2S2
,. . . ,

Cnt1Sp
, Cnt2Sp

, . . .Cnt
kp
Sp

where ki is the domain size
of segment i. Based on these primitives, we explain
how to execute the previous operations based on
the PRF function G as follows. As explained earlier,
there are several instances of MuPS in SESOS. For
simplicity, we just explain the needed modifications
for one of them while the others are similar.

Encryption The client retrieves the correspond-
ing counter of the plaintext value for the target seg-
ment (CntvalueSi

) from the stored map. Increments the
counter and computes the following PRF value to use
as the output of MuPS for the target segment:ci =
GSi

key
(value, CntvalueSi

)

Executing LIKE Query To execute LIKE query,
the client executes the same procedure as before ex-
cept that instead of iterating over the MuPS lookup
table, it evaluates GSi

key
(value, loopCounter) for

loopCounter = 1, . . .CntvalueSi
. CntvalueSi

is the cur-
rent counter of the target value. Then, it uses the
achieved ciphertexts as replacement of lookup values
and continues the previous procedure of SESOS.

DecryptionThe decrypt operation requires to eval-

ISeCure

28 SESOS — J. Ghareh Chamani et al.

uate all PRF values which could be appeared in each
segment and find their corresponding keys. Although
this computation seems to have enormous overhead,
it can be done very fast by considering two points.
First of all, users do not normally ask for decryption
of random records. Instead, they ask for some queries
which their results should be decrypted. It means that
the client already knows the target keys which their
PRFs should be evaluated because at the rewriting
phase of the input query the client had created the
corresponding ciphertext values. This number is usu-
ally very smaller than the whole relation size and can
be computed very efficiently. Second, the PRF func-
tion can be computed using AES which is supported
by the hardware (AES-NI) and has incredibly high
performance. Indeed, even though the decryption per-
formance does not reach the previous value (with a
look-up table), it is still higher than the previously
existing solutions.

Comparison We do not change the OPE part of
SESOS. As the result, the comparison operation is
the same as the previously explained algorithm.

As you can see, we reduced the security level of
MuPS to the security level of PRF in order to decrease
the needed permanent storage at the client while the
performance does not change a lot.

5 Evaluation

The test scenarios were performed on an Intel® Core™

i7-5500 2.4 GHz with 4 GB of RAM on a 64-bit Ubuntu
14.04 operating system. PostgreSQL 9.3 was used as
the DBMS.

The OPE scheme FOPE [23] is considered, as it is
significantly faster and more practical than CryptDB’s
mOPE scheme. We implemented FOPE in C++ using
the MPZ library [38]. We used FOPE as a determin-
istic OPE scheme in SESOS construction too. Note
that since SESOS performs extra operations (MuPS
encryptions) compared to the underlying OPE, it is
expected to have some overhead. However, experi-
ments show that the overhead is small, and in some
scenarios (such as LIKE queries), SESOS can hugely
outperform the OPE scheme.

In the remainder of this section, we first report the
results of performance tests, and then pertain to the
storage and network results.

5.1 Performance

In order to compare the performance of SESOS with-
out storage improvement and FOPE, some experi-
ments were conducted. In each experiment, the target
operation was executed 100 times and its averaged

Table 1. Encryption Time of FOPE and SESOS (in Seconds)

Based On the Number of Records

Records FOPE SESOS

20, 000 62 65

40, 000 125 126

60, 000 187 188

80, 000 268 272

100, 000 336 342

value is provided as the result. The impact of record
numbers on compared methods have been analyzed
over different number of timestamps which were ran-
domly generated between 1970 and 2017. As you can
see, the highest value for ` among different segments
of experimented timestamps is 60. For simplicity, we
used the different MuPS with the same parameters
(` = 60, n = 105, and δ = 0.999) which leads to m =
1857 for each segment.

5.1.1 Encryption

To evaluate the encryption performance, a column of
table with timestamp values was encrypted by both
FOPE and SESOS. Because of the small overhead of
MuPS encryption (it just uses a lookup table), encryp-
tion speed of both methods are approximately equal,
as expected. It means that, SESOS encryption adds
negligible overhead to an existing OPE mechanisms.
The results are shown in Figure 3 and Table 1.

5.1.2 Decryption

Figure 4 and Table 2 show the decryption time for
FOPE, SESOS, and XSESOS. Notice that SESOS de-
cryption is extremely faster than FOPE decryption.
This is because SESOS only uses a lookup table for
decryption (strategy 2), while FOPE requires an enor-
mous amount of computation for the same purpose.
The little overhead of SESOS is due to the fact that
SESOS has to call the DBMS SUBSTRING function. As
you can see, its decryption time is faster than FOPE
scheme by up to 520X which is a huge improvement.

XSESOS has to deal with just a little more over-
head than FOPE, since it requires to perform both
decryption strategies, as well as a comparison. The
extra overhead is paid off by noting that XSESOS pro-
vides verifiability as well, which is provided by neither
FOPE nor SESOS.

5.1.3 Equality and Comparison Queries

Evaluation of equality and comparison queries was
done by placing random timestamps in the WHERE

clause of the respective queries. As is customary in

ISeCure

January 2019, Volume 11, Number 1 (pp. 15–34) 29

0

50

100

150

200

250

300

350

400

20000 40000 60000 80000 100000

E
n
cr

y
p

ti
o

n
 T

im
e

(s
ec

o
n
d

s)

Number of Records

Encryption Times

SESOS FOPE

Figure 3. Graph of the Encryption Time of FOPE and SESOS (in Seconds) vs. the Number of Records

0

50

100

150

200

250

300

350

20000 40000

D
ec

ry
p

ti
o

n
 T

im
e

(s
ec

o
n
d

s)

Number of Records

Decryption Times

0

50

100

150

200

250

300

20000 40000 60000 80000 100000

D
ec

ry
p

ti
o

n
 T

im
e

(s
ec

o
n
d

s)

Number of Records

Decryption Times

SESOS FOPE XSESOS

Figure 4. Graph of the Decryption Time of FOPE, SESOS, and XSESOS (in Seconds) vs. the Number of Records

Table 2. Decryption Time of FOPE, SESOS, and XSESOS

(in Seconds) Based On the Number of Records

Records FOPE SESOS

20, 000 60 0.122 60

40, 000 101 0.293 106

60, 000 187 0.380 201

80, 000 231 0.443 241

100, 000 265 0.603 286

real-world scenarios, a B-Tree index was defined on
encrypted values. The results of the experiments are
presented in Figure 5 and Figure 6, respectively. As can
be seen, the overhead of SESOS is negligible compared
to FOPE. The reason for the small difference is the
increase in the size of the ciphertexts, which makes
string operations a little bit slower.

5.1.4 LIKE Queries

Similar to the other existing solutions, FOPE does
not support LIKE queries directly. This means that
the search should be performed after fetching and
decrypting all target data in a trusted zone (such as
a proxy). The overhead of this method depends on
the total number of records, and is independent of the
size of the result set.

In this experiment, LIKE queries were executed for
both methods in order to retrieve the records with a
specific random month of the year. Using this method-
ology, two different criteria were evaluated: (1) The
search time required by the DBMS, and (2) the de-
cryption time required by the proxy. As it is shown
in Figure 7, SESOS database search time is negligible
in comparison to the decryption time which is required
by FOPE method. Furthermore, the decryption time
of SESOS is proportional to number of retrieved re-
sults, while the FOPE’s time is approximately con-
stant. Figure 8 and Figure 9 show the details of Fig-

ISeCure

30 SESOS — J. Ghareh Chamani et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20000 40000 60000 80000 100000E
x
ec

u
ti

o
n
 T

im
e

(m
il

is
ec

o
n
d

s)

Number of Records Involved in Search

Equality Query Execution Times

SESOS FOPE

Figure 5. Execution Time of Queries with Equality Condition (in Milliseconds) vs. the Number of Records

0

200

400

600

800

1000

1200

20000 40000 60000 80000 100000

E
x
ec

u
ti

o
n
 T

im
e

(m
il

is
ec

o
n
d

s)

Number of Records Involved in Search

Comparison Query Execution Times

SESOS FOPE

Figure 6. Execution Time of Queries with Comparison (in Milliseconds) vs. the Number of Records

ure 7 in separate diagrams. As it can be seen, SESOS
has much better performance.

In real-world scenarios, results of LIKE queries con-
tain only a small fraction of all records. By considering
the evaluation results, it can be concluded that SESOS
increases performance of LIKE queries by up to 1370X
depending on the number of target results in compar-
ison with FOPE. This result is achieved while other
operations such as encryption, decryption, equality
check, and comparison do not have any noticeable
overhead.

5.2 Storage and Network

SESOS concatenates multiple partial ciphertexts to
generate the final ciphertext. The number of segments
depends on the structured data under consideration.
For instance, timestamps need seven ciphertext seg-
ments (one for OPE, and six for each plaintext seg-
ment), while IPv4 addresses need five segments (one
for OPE, and four for each plaintext segment). The
size of SESOS ciphertext is almost twice the size of
the underlying OPE, as it encompasses one OPE ci-

phertext plus the encryption of several small segments.
Although this amount of storage may seem significant,
the provided performance improvement makes such a
price acceptable.

The network traffic required to transfer the result
set of a SESOS query vary in different situations. All
queries (except those containing LIKE) fetch the same
result set as FOPE. In XSESOS, the traffic is doubled,
as it requires both OPE ciphertexts and the MuPS
ciphertexts in order to provide verifiability.

As discussed earlier, SESOS treats LIKE queries
much better than FOPE, and can return a result set
which is much smaller than the whole database records.
Therefore, the generated network traffic of SESOS
is several times lower than that of FOPE. This also
holds for XSESOS. Table 3, presents a summary of
network traffic comparison between FOPE, SESOS
and XSESOS.

6 FutureWork

In SESOS, the size of a compiled query increases when
the parameter m increases (recall from Definition 2

ISeCure

January 2019, Volume 11, Number 1 (pp. 15–34) 31

1

10

100

1000

10000

100000

1000000

SESOS

1%

FOPE

1%

SESOS

4%

FOPE

4%

SESOS

8%

FOPE

8%

SESOS

12%

FOPE

12%

SESOS

15%

FOPE

15%

E
x
ec

u
ti

o
n
 T

im
e(

m
il

is
ec

o
n
d

s)

Percent of Recrods in Answer of Query

LIKE Query Execution Time on 100K Records

Database Search Decryption

Figure 7. Execution Time of LIKE Queries (in Seconds) vs. the Percentage of Records in the Result

SESOS FOPE SESOS FOPE
1% 187.571 1474.23 2433.28 26426.4

25% 2467.02 1425.85 5985.34 26587.9
50% 5159.53 1439.03 12042.3 27416.3
75% 7790.19 1430.57 18982.5 28070.9

100% 9820.7 1417.83 26624.5 26624.5

1 187.571 1474.23 2433.28 26426.4
4 472.5021 1468.183 2877.288 26446.59
8 852.4103 1460.119 3469.298 26473.5

12 1232.318 1452.056 4061.308 26500.42
15 1517.25 1446.008 4505.315 26520.61

1% 187.571 1472.44 2430.61 26426.4
4% 463.57 1470.35 2870.34 26446.59
8% 850.78 1471.62 3470.95 26452.1

12% 1204.69 1469.27 4065.21 26510.3
15% 1432.45 1473.05 4500.15 26513.7

DB Decryption

0

200

400

600

800

1000

1200

1400

1600

1% 4% 8% 12% 15%

Ex
ec

ut
io

n
Ti

m
e

(m
ili

se
co

nd
s)

Percent of Records inAnswer of Query

Database Execution Time for LIKE Query on 100K Recrods

SESOS FOPE

0

5000

10000

15000

20000

25000

30000

1% 4% 8% 12% 15%

Ex
ec

ut
io

n
Ti

m
e

(m
ili

se
co

nd
s)

Percent of Records inAnswer of Query

Result Decryption Time for LIKE Query on 100K Recrods

SESOS FOPE

Figure 8. Decryption Time of LIKE Queries (in Seconds) vs. the Percentage of Records in the Result

1

10

100

1000

10000

100000

1000000

1% 4% 8% 12% 15%

E
x
ec

u
ti

o
n

 T
im

e
(m

il
is

ec
o

n
d
s)

Percent of Records inAnswer of Query

Result Decryption Time for LIKE Query on 100K Recrods

SESOS FOPE

Figure 9. Database Search Time of LIKE Queries (in Seconds) vs. the Percentage of Records in the Result

that m is the number of mappings per plaintext).
One idea is to retrieve the result set in a “page-by-

page” manner: Instead of retrieving all m ciphertexts
corresponding to a single plaintext, the client software

ISeCure

32 SESOS — J. Ghareh Chamani et al.

Table 3. FOPE Network Traffic Relative to SESSOS and

XSESOS

Operation FOPE/SESOS FOPE/XSESOS

Equality 1 ≥ 0.5

Range Query 1 ≥ 0.5

LIKE 2 to 100 1 to 50

can fetch a subset of those results, and show them to
the user. If the user asks for the next “page” of the
results, the client software can retrieve another subset,
and so on.

Another approach is to modify MuPS as follows:
For each plaintext p, the key specifies m′ subsets
C1p , . . . , Cm

′

p in the ciphertext space. The encryption
function randomly maps p to a ciphertext in one of
those subsets. Here, m′ can be much smaller than m.
Yet the modified version is no longer perfect secure. A
future study can be conducted to examine the ramifi-
cations of such modification on the security of SESOS.

Another line of work is the study of query analysis.
The current version of SESOS allows a service provider
(SP) to cluster ciphertexts based on the mappings
provided in each query. For instance, in a query such
as:

SELECT ∗ FROM tb l WHERE

(SUBSTRING(date , 3 6 , 3) IN (445 ,321 ,791)) or

(SUBSTRING(date , 3 9 , 3) IN (020 , 554 , 225)) ;

The SP receiving the above query can be sure that
ciphertexts in (445, 321, 791) correspond to one plain-
text p, and ciphertexts in (020, 554, 225) correspond
to a distinct plaintext p′. To prevent this type of anal-
ysis, random noise can be added to the IN clause, and
the IN clause can be split into multiple queries (the
“paging” method described above). A formal analysis
of the impact of these techniques on the security of
SESOS is another direction for future research.

This paper concentrated on LIKE operation on struc-
tured data. There exist other operations on various
data types, most of which are not supported by exist-
ing encryption schemes. Furthermore, each DB encryp-
tion scheme supports only a limited set of operations,
and so it is required to store a separate column per
scheme to support multiple operations on encrypted
data. This type of storage causes issues in executing
nested queries which has to be eliminated.

7 Conclusions

In this paper, a searchable encryption scheme for or-
dered structured data (SESOS), and an extended vari-
ant (XESOS) were proposed. The schemes combined
any order-preserving encryption (OPE) with a novel
encryption scheme called MuPS. We proved the per-

fect secrecy of MuPS, demonstrating that it can be
combined with any OPE without weakening its secu-
rity properties. SESOS and XSESOS were evaluated
under various criteria. It was shown that the overhead
is negligible compared to the underlying OPE scheme,
while it outperforms the OPE by up to 1370X and
520X in response to LIKE queries and decryption in a
database with merely 100K records. The performance
gain can be increased on larger databases. SESOS also
provides extremely faster decryption compared to the
underlying OPE. On the other hand, XSESOS allows
for ciphertext verifiability, with negligible performance
overhead with respect to the underlying OPE.

References

[1] Raluca Ada Popa, Catherine Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. CryptDB:
protecting confidentiality with encrypted query
processing. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Princi-
ples, pages 85–100. ACM, 2011.

[2] Stephen Tu, M Frans Kaashoek, Samuel Madden,
and Nickolai Zeldovich. Processing analytical
queries over encrypted data. In Proceedings of the
VLDB Endowment, Vol. 6, No. 5, pages 289–300,
2013.

[3] Zhian He, Wai Kit Wong, Ben Kao, David
Wai Lok Cheung, Rongbin Li, Siu Ming Yiu, and
Eric Lo. SDB: a secure query processing system
with data interoperability. Proceedings of the
VLDB Endowment, 8(12):1876–1879, 2015.

[4] Craig Gentry, Shai Halevi, and Nigel P Smart.
Fully homomorphic encryption with polylog over-
head. In Annual International Conference on the
Theory and Applications of Cryptographic Tech-
niques, pages 465–482. Springer, 2012.

[5] Xiaoqiang Sun, Jianping Yu, Ting Wang, Zhi-
wei Sun, and Peng Zhang. Efficient identity-
based leveled fully homomorphic encryption from
RLWE. Security and Communication Networks,
9(18):5155–5165, 2016.

[6] Craig Gentry et al. Fully homomorphic encryp-
tion using ideal lattices. In STOC, pages 169–178,
2009.

[7] Raluca Ada Popa, Catherine Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. CryptDB: pro-
cessing queries on an encrypted database. Com-
munications of the ACM, 55(9):103–111, 2012.

[8] Li Xiong, Slawomir Goryczka, and Vaidy Sun-
deram. Adaptive, secure, and scalable distributed
data outsourcing: a vision paper. In Proceedings
of the 2011 workshop on Dynamic distributed data-
intensive applications, programming abstractions,
and systems, pages 1–6. ACM, 2011.

[9] Jin Li, Zheli Liu, Xiaofeng Chen, Fatos Xhafa,
Xiao Tan, and Duncan S Wong. L-EncDB:

ISeCure

January 2019, Volume 11, Number 1 (pp. 15–34) 33

A lightweight framework for privacy-preserving
data queries in cloud computing. Knowledge-
Based Systems, 79:18–26, 2015.

[10] Ernesto Damiani, SDCD Vimercati, Sushil Jajo-
dia, Stefano Paraboschi, and Pierangela Sama-
rati. Balancing confidentiality and efficiency in
untrusted relational DBMSs. In Proceedings of
the 10th ACM conference on Computer and com-
munications security, pages 93–102. ACM, 2003.

[11] Dongmei Li, Xiaolei Dong, and Zhenfu Cao. Se-
cure and privacy-preserving pattern matching in
outsourced computing. Security and Communi-
cation Networks, 9(16):3444–3451, 2016.

[12] Wei Song, Zhiyong Peng, Qian Wang, Fangquan
Cheng, Xiaoxin Wu, and Yihui Cui. Efficient
privacy-preserved data query over ciphertext in
cloud computing. Security and Communication
Networks, 7(6):1049–1065, 2014.

[13] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan
Srikant, and Yirong Xu. Order preserving en-
cryption for numeric data. In Proceedings of the
2004 ACM SIGMOD international conference on
Management of data, pages 563–574. ACM, 2004.

[14] Hui Wang and Laks VS Lakshmanan. Efficient
secure query evaluation over encrypted XML
databases. In Proceedings of the 32nd interna-
tional conference on Very large data bases, pages
127–138. VLDB Endowment, 2006.

[15] Divyakant Agrawal, Amr El Abbadi, Fatih
Emekci, and Ahmed Metwally. Database manage-
ment as a service: Challenges and opportunities.
In Data Engineering, 2009. ICDE’09. IEEE 25th
International Conference on, pages 1709–1716.
IEEE, 2009.

[16] Mohammad Ali Hadavi, Morteza Noferesti, Ra-
sool Jalili, and Ernesto Damiani. Database as
a service: towards a unified solution for security
requirements. In Computer Software and Appli-
cations Conference Workshops (COMPSACW),
2012 IEEE 36th Annual, pages 415–420. IEEE,
2012.

[17] Gagan Aggarwal, Mayank Bawa, Prasanna Gane-
san, Hector Garcia-Molina, Krishnaram Kentha-
padi, Rajeev Motwani, Utkarsh Srivastava, Dilys
Thomas, and Ying Xu. Two can keep a secret:
A distributed architecture for secure database
services. CIDR 2005, 2005.

[18] Alexandra Boldyreva, Nathan Chenette, and
Adam O’Neill. Order-preserving encryption re-
visited: Improved security analysis and alterna-
tive solutions. In CRYPTO, volume 6841, pages
578–595. Springer, 2011.

[19] Hasan Kadhem, Toshiyuki Amagasa, and Hi-
royuki Kitagawa. A Secure and Efficient Or-
der Preserving Encryption Scheme for Relational
Databases. In KMIS, pages 25–35, 2010.

[20] George Weilun Ang, John Harold Woelfel, and
Terrence Peter Woloszyn. System and method
of sort-order preserving tokenization, May 2014.
US Patent 8,739,265.

[21] Fahmida Y Rashid. Salesforce. com acquires SaaS
encryption provider Navajo Systems. eWeek. com,
2011.

[22] Raluca Ada Popa, Frank H Li, and Nickolai
Zeldovich. An ideal-security protocol for order-
preserving encoding. In Security and Privacy
(SP), 2013 IEEE Symposium on, pages 463–477.
IEEE, 2013.

[23] Yong Ho Hwang, Sungwook Kim, and Jae Woo
Seo. Fast order-preserving encryption from uni-
form distribution sampling. In Proceedings of
the 2015 ACM Workshop on Cloud Computing
Security Workshop, pages 41–52. ACM, 2015.

[24] Florian Kerschbaum. Frequency-hiding order-
preserving encryption. In Proceedings of the
22nd ACM SIGSACConference on Computer and
Communications Security, pages 656–667. ACM,
2015.

[25] Dawn Xiaodong Song, David Wagner, and Adrian
Perrig. Practical techniques for searches on en-
crypted data. In Security and Privacy, 2000.
S&P 2000. Proceedings. 2000 IEEE Symposium
on, pages 44–55. IEEE, 2000.

[26] Reza Curtmola, Juan Garay, Seny Kamara, and
Rafail Ostrovsky. Searchable symmetric encryp-
tion: improved definitions and efficient construc-
tions. In Proceedings of the 13th ACM conference
on Computer and communications security, pages
79–88. ACM, 2006.

[27] Seny Kamara, Charalampos Papamanthou, and
Tom Roeder. Dynamic searchable symmetric en-
cryption. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security,
pages 965–976. ACM, 2012.

[28] Florian Hahn and Florian Kerschbaum. Search-
able encryption with secure and efficient updates.
In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security,
pages 310–320. ACM, 2014.

[29] David Cash, Stanislaw Jarecki, Charanjit Jutla,
Hugo Krawczyk, Marcel-Cătălin Roşu, and
Michael Steiner. Highly-scalable searchable
symmetric encryption with support for boolean
queries. In Advances in cryptology–CRYPTO
2013, pages 353–373. Springer, 2013.

[30] David Cash and Stefano Tessaro. The locality of
searchable symmetric encryption. In Annual In-
ternational Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 351–
368. Springer, 2014.

[31] Muhammad Naveed, Manoj Prabhakaran, and
Carl A Gunter. Dynamic searchable encryption

ISeCure

34 SESOS — J. Ghareh Chamani et al.

via blind storage. In Security and Privacy (SP),
2014 IEEE Symposium on, pages 639–654. IEEE,
2014.

[32] Ian Miers and Payman Mohassel. Io-dsse: Scal-
ing dynamic searchable encryption to millions of
indexes by improving locality. IACR Cryptology
ePrint Archive, 2016:830, 2016.

[33] Raphaël Bost, Brice Minaud, and Olga Ohri-
menko. Forward and backward private searchable
encryption from constrained cryptographic prim-
itives. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications
Security, pages 1465–1482. ACM, 2017.

[34] Javad Ghareh Chamani, Dimitrios Papadopoulos,
Charalampos Papamanthou, and Rasool Jalili.
New constructions for forward and backward pri-
vate symmetric searchable encryption. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages
1038–1055. ACM, 2018.

[35] Alexandra Boldyreva, Nathan Chenette, Younho
Lee, and Adam O’Neill. Order-preserving sym-
metric encryption. In EUROCRYPT, volume
5479, pages 224–241. Springer, 2009.

[36] Isamu Teranishi, Moti Yung, and Tal Malkin.
Order-preserving encryption secure beyond one-
wayness. In ASIACRYPT, pages 42–61. Springer,
2014.

[37] Dan Boneh and Victor Shoup. A Graduate
Course in Applied Cryptography. Draft of a
book, version 0.3, December 2016. Available
online from https://crypto.stanford.edu/

~dabo/cryptobook/draft_0_3.pdf.
[38] The GNU Multiple Precision Arithmetic Library

(GMP). Available from https://gmplib.org.

Javad Ghareh Chamani received
his B.S. degree in software engi-
neering from University of Tehran,
Tehran, Iran, in 2012, and received
his M.S. degree in software engineer-
ing from Sharif University of Tech-
nology,Tehran, Iran, in 2014. He is

currently Ph.D. student of Sharif University of Tech-
nology,Tehran, Iran and The Hong Kong University of
Science and Technology. His research interests include
cloud security, database security, database outsourc-
ing, and cloud computing.

Mohammad Sadeq Dousti got
his Ph.D. from Sharif University of
Technology in software engineering,
and his M.S. and B.S. from Sharif
University of Technology in IT en-
gineering. He did extensive work on
zero-knowledge proofs in particular,

and provable security in general. He has taught several
courses at the university, including applied cryptogra-
phy, theory of cryptography, secure software develop-
ment, and network security. His research interests in-
clude foundations of cryptography and computational
complexity theory.

Rasool Jalili received his B.S. de-
gree in computer science from Fer-
dowsi Universityof Mashhad in 1985,
and M.S. degree in computer engi-
neering from Sharif University of-
Technology in 1989. He received his
Ph.D.in computer science from Uni-

versity of Sydney, Australia, in 1995. He then joined
the Department of Computer Engineering, Sharif Uni-
versity of Technology in 1995. He has published more
than 140 papers in international journals and confer-
ence proceedings. He is now an associate professor,
doing research in the areas of computer dependability
and security, access control,distributed systems, and
database systems in his Data and Network Security
Laboratory (DNSL).

Dimitrios Papadopoulos is an as-
sistant professor at the Computer
Science and Engineering Department
of the Hong Kong University of Sci-
ence and Technology. He received
a Diploma in applied mathematics
from the National Technical Univer-

sity of Athens in 2010, a Ph.D. in computer science
from Boston University in 2016 and was subsequently
a Post-doctoral researcher at the University of Mary-
land Institute for Advanced Computer Studies. He
has published multiple papers in international confer-
ence proceedings and journals. His research is focused
on the development of cryptographic protocols for
verifiable computation, zero-knowledge proofs, search-
able/structured encryption and oblivious computation
for data privacy, as well as Blockchain security.

ISeCure

https://crypto.stanford.edu/~dabo/cryptobook/draft_0_3.pdf
https://crypto.stanford.edu/~dabo/cryptobook/draft_0_3.pdf
https://gmplib.org

	1 Introduction
	1.1 Obvious Ideas Which Fail to Work
	1.2 Our Contribution
	1.3 Organization

	2 Related Work
	2.1 Architectures
	2.2 Encryption Schemes
	2.3 Searchable Encryption

	3 Preliminaries
	4 The Proposed Encryption Scheme
	4.1 MuPS: A Multi-map Perfectly Secure Cryptosystem
	4.2 SESOS: A Searchable Outsourcing Scheme for Ordered Structured Data
	4.3 A Numerical Example
	4.4 Reducing the Storage of the Client

	5 Evaluation
	5.1 Performance
	5.2 Storage and Network

	6 Future Work
	7 Conclusions

