
ISeCure
The ISC Int'l Journal of
Information Security

November 2021, Volume 13, Number 3 (pp. 59–67)

http://www.isecure-journal.org

Selected Paper at the ICCMIT’21 in Athens, Greece

Open Web Application Security Project Components with

Known Vulnerabilities: A Comprehensive Study ∗∗

Mohammed S. Albulayhi 1, and Dina M. Ibrahim 1,2,∗
1Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia.
2Computers and Control Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt.

A R T I C L E I N F O.

Keywords:

Web Application Security,
OWASP, Vulnerability

Type: Research Article

doi:
10.22042/ISECURE.2021.0.0.0

dor: 20.1001.1.20082045.2021.

13.3.7.4

A B S T R A C T

The Open Web Application Security Project (OWASP) is a nonprofit

organization battling for improvements in software protection and enhancing

the security of web applications. Moreover, its goal is to make application

security “accessible” so that individuals and organizations can make educated

decisions about security threats. The OWASP is a repository of tools and

standards for web security studies. OWASP released an annual listing of

the top 10 most common vulnerabilities on the web in 2013 and 2017. This

research paper proposed a comprehensive study on Components with known

vulnerabilities attack, which is the ninth attack (A9) among the top 10

vulnerabilities. Components with known vulnerabilities are the third-party

components that the focal system uses as authentication frameworks.

Depending on the vulnerability it could range from subtle to seriously bad.

This danger arises because the app’s modules, like libraries and frameworks,

are almost always run with the highest privileges. If a compromised aspect is

abused, the hacker’s task of causing significant loss of information or server

takeover is easier.

© 2020 ISC. All rights reserved.

1 Introduction

Web application security refers to a range of
web servers, web applications, and web service

protective procedures, technologies, and approaches,
including Internet-based threats-reducing APIs. The
protection of data, consumers, or organizations
against data theft, business continuity disruptions,

∗ Corresponding author.
∗∗The ICCMIT’21 program committee effort is
highly acknowledged for reviewing this paper.

Email addresses: 421100196@qu.edu.sa,
d.hussein@qu.edu.sa, dina.mahmoud@f-eng.tanta.edu.eg

ISSN: 2008-2045 © 2020 ISC. All rights reserved.

or other adverse effects from cybercrime is critical
to the protection of web application security. More
than three-quarters of all cybercrime apps and their
vulnerabilities are calculated according to most es-
timations. Web application security products and
policies aim to protect applications through measures
such as web application firewalls (web application
firewalls), user multi-factor authentication (MFA),
cookie utilization, security and validation to main-
tain the status of users, and different methods for
validating user input to prevent maliciousness before
the application processes this input [1]. Open-source
technologies and nowhere have transformed the new
tech industry is this more apparent than web appli-

ISeCure



60 OWASP Components with Known Vulnerabilities: A Comprehensive Study — Albulayhi and Ibrahim

cation creation. Thanks to open-source languages,
structures, and advancement tools, creators can build
rich and sophisticated web apps in a relatively short
time and the resources it took in previous years. The
Open Web Application Security Project was devel-
oped to provide uniform standards for organizations
dealing with web application security to help them
leverage open-source applications responsibly. The
OWASP develops and distributes documents, articles,
software, and technology to assist those businesses [2].

OWASP’s Ten Best list of program security threats
is one such piece of evidence, which details the most
popular errors that occur regularly and can be quickly
manipulated. With the 2013 upgrade, OWASP A9
has become“Using Components with Known Vulner-
abilities”, while previous iterations of the list have
“Inadequate Transport Layer Protection” as the ninth
object [3]. As a result, the focus is on open-source
security as never before. When the Equifax hack was
revealed in September 2017, the replicated OWASP
Ten Best entry may have avoided the breach if the
firm had been more vigilant in its use of components
with identified flaws. In November 2017, the OWASP
topmost ten records were revised, with the Known
Vulnerabilities vulnerability remaining in ninth place.

The examples are of utilizing components with
known vulnerabilities. By failing to have an iden-
tity key, attackers can use whatever web service with
full authorization. The Spring Framework for Java-
based applications eliminates the necessity of expres-
sion language injection vulnerability. The Preven-
tive Mechanisms Identify all components and the
database/frameworks versions used in mobile applica-
tions are not the only ones. Maintain the most recent
versions of all modules. Including online directories,
project mailing lists, etc., and adding security wrap-
pers around vulnerable components [4].

Known vulnerabilities are discovered in Open-
source components that have been released in the
NVD, safety advisories, or problem trackers. Hackers
who discover the documents will exploit a flaw from
the moment it is released. Applying components
with known vulnerabilities is common, according
to the OWASP organization [3, 5, 6]. Furthermore,
open-source components are so widely used that
even development leaders are unaware of what they
have. Open-source bugs may have a wide variety of
consequences, from mild flaws to other more serious
security attacks ever found. The notorious Equifax
hack, for example, was triggered by the use of an
Apache Struts update that had been considered to
be vulnerable since March 2017.

It is known that at least some open source compo-
nents are present in well over 80% of all applications.

Figure 1. Scenario 1 (courtesy: GBHackers on security)

Figure 2. Scenario 2 (courtesy: GBHackers on security)

As a result of their extensive use, third-party modules
are an enticing choice for future hackers. When any
of the above considerations are considered, it is easy
to see why OWASP added “A9: Using Components
with Known Vulnerabilities” to their uppermost ten
catalogs. Although OWASP recognizes that the easi-
est way to prevent established security threats is to
avoid using third-party modules, they also stress that
this would be an impractical choice. Such a strategy
will rob a corporation of vital capital while also signif-
icantly increasing the expense and duration of future
construction programs [7–10].

The risk’s exploitability is average; the attacker
must search or manually analyze the vulnerable
component to find it. However, since most pro-
gramming teams do not focus on ensuring that
their parts/libraries are breakthroughs, the risk is
widespread; many systems have these problems. The
creators don’t know any of the components they’re
using, and it doesn’t matter what style they’re using.
Injection, compromised access control, XSS, and
other vulnerabilities are all conceivable. The effect
may be minor to significant [11–13]. Figure 1 and Fig-
ure 2 gives the two type of attacks encountered in
web security mechanism under the known vulnerabil-
ities. In the first scenario, explained in Figure 1, the
intruder and the webserver are now attempting to
manipulate a defective component on the server; a
sensitive component is simply a commodity or library
that is potentially vulnerable [14, 15].

While in the second scenario, as illustrated if Fig-

ISeCure



November 2021, Volume 13, Number 3 (pp. 59–67) 61

ure 2, in this case, the attacker attempts to submit
the website, which, let’s say, loads a tab that con-
tains the vulnerability. The website replies to the
inquiry, revealing the insecure components as well.
After identifying the insecure components and ver-
sions, the attacker can scan the Internet for known
vulnerabilities. Regardless, attackers can easily iden-
tify risks associated with insecure components on the
internet, giving them insight on how to circumvent
this danger [11, 16]. The intruder then proceeds to
initiate an assault on the website. Table 1 depicts the
consolidation of the different losses that occurred by
the components with known vulnerabilities.

The rest of this paper is organized as follows: Sec-
tion 2 presents a comprehensive literature analysis
of Components with Known Vulnerabilities. In Sec-
tion 3, an investigation of the several examples of us-
ing components with known vulnerabilities and their
prevention mechanism is demonstrated. Discussions
and findings are presented in Section 4. Finally, con-
clusion is given in Section 5.

2 Literature Review of Components
with Known Vulnerabilities

2.1 Establish an Internal Security Policy

Many businesses fail to develop clear guidelines to
regulate their software creation, particularly in which
open-source components are appropriate. This is par-
ticularly critical because not all vulnerabilities are
created equal [14]. “The United States government
registry of rules vulnerability management data”,
according to the National Vulnerability Database
(NVD). Vulnerabilities are released to the NVD us-
ing the Common Vulnerabilities and Exposure (CVE)
scheme, which provides a centralized location to mon-
itor security-related program flaws.

Removing every third-party component which has
a flaw is not always realistic, and many open-source
developers sometimes do not release security fixes
against older versions of software, instead merely fix-
ing the problem in future updates. The CVE rating
system can be beneficial in this situation. When the
CVE number is small enough, there could be no rea-
son to stop when using the affected component while
waiting for a new update [17–19]. As a result, imple-
menting a company-wide approach will be highly ben-
eficial to the development team and the bottom line.
What score can be used to determine when a com-
ponent’s usage is halted? What kinds of weaknesses
would be tolerated? Ensure that all of the creators
are all on the same page, whether for open-source or
proprietary technology, to ensure a clear and stable
solution.

2.2 Identifying Affected Components

It is one thing to have a strategy in place; it is quite
another to stick to it. The interdependence of open-
source applications is one aspect leading to this issue.
According to research conducted by White Source,
“Indirect open-source dependencies are used in 91 of
program projects [20–23]. The typical project uses 64
different libraries, each with its own set of licenses”.
“In 65 percent of instances, open-source modules come
with external dependencies which are already subject
to a separate license”, says the study. Finding all rel-
evant CVEs manually can be challenging, especially
with several interdependencies, license variants, and
individual libraries. Often the connection between
that CVE and the impacted program is not immedi-
ately apparent.

Therefore, an open-source management solution
is so vital for a modern company. Through evalu-
ating the tasks and the open-source determination,
White Source has streamlined this process. Open-
source modules are being used, and the related CVEs
are being cross-referenced to see which, if any, are
sensitive. Moreover, White Source’s monitoring sys-
tem constantly checks the applications to guarantee
that you are alerted as quickly as possible if any bugs
occur. Using the NVD, learning CVE ratings, devel-
oping a company-wide growth strategy, and using
an integrated open-source management tool are all
things that can be done [20].

This danger arises because the app’s modules, like
libraries and frameworks, are approximately forever
operated through complete rights. If a compromised
aspect is abused, the hacker’s task of causing signifi-
cant loss of information or server takeover is easier.

The following are a few explanations of how to use
modules that have known flaws –

• By failing to have an identity key, attackers can
have any web application with full authoriza-
tion.

• The Spring Framework for Java-based applica-
tions introduces eliminating the necessity for
Expression Language injection vulnerability.

3 Preventive Mechanisms for
Components with Known
Vulnerabilities

This section investigates several examples of using
components with known vulnerabilities and their pre-
vention mechanism are demonstrated. No matter how
secure your code is, attackers can exploit APIs, de-
pendencies, and other third-party components if they
are not themselves secure.

ISeCure



62 OWASP Components with Known Vulnerabilities: A Comprehensive Study — Albulayhi and Ibrahim

Table 1. Different losses occurred by the components with known vulnerabilities

Human - social Physical Economic Cultural environment

Direct

losses

Fatalities

Injuries

Loss of income or

employment

Homelessness

Structural damage or collapse

to buildings

Non- structural damage and

damage to contents

Structural damage infrastructure

Interruption of business due to damage to

buildings and infrastructure

Loss of productive workforce through

fatalities, injuries and relief

Sedimentation

Pollution

Endangered species

Destruction of cultural heritage

Indirect

losses

Diseases

permanent disability

psychological impact

loss of social cohesion due to

disruption of community

political unrest

progressive deterioration of damaged

buildings and infrastructure

which are not repaired

economics losses due to short term

disruption of activities

long term economic losses

insurance losses weakening

the insurance market

less investment

capital costs of repair

reduction in tourism

loss of biodiversity

loss of cultural diversity

• Not only databases or frameworks but also all
modules and versions used in web apps should
be identified.

• Maintain the most recent versions of all mod-
ules, including online directories, project mail-
ing lists, and so on.

• Wrap fragile materials in security wrappers.

Table 2 illustrates some terminologies used in
components with vulnerabilities (Courtesy: Tutori-
als Point), which depicts the Threat Agents, Attack
Vectors, Security weaknesses, Technical Impact, and
Business Impacts associated with this vulnerability.

Most Web apps stored the data in SQL databases.
Almost every Web application has a SQL database
running in the background. SQL syntax, like most
other languages, allows database commands to be
combined with customer data. If developers aren’t
careful, user data can be interpreted as commands,
allowing remote users to do more than just input data
into Web applications; they can even run arbitrary
commands on the database.

4 Discussion and Findings

When a company is hacked, you would like to think
that the perpetrator created a new exploit based on
a zero-day flaw that no one can defend against. How-
ever, it is much more plausible that the perpetrator
took advantage of well-known flaws that had been

lurking in their programs throughout the years, if
not years. Attackers use automated scripts to scan
web applications for suspected flaws and then hack
the flaws they find. A large percentage of attackers
would not spend sufficient time and effort necessary
to create an exceptional exploit to gain access to your
systems, particularly if they can quickly identify se-
curity vulnerabilities in several of your frameworks
or their dependencies. Using components with doc-
umented bugs has resulted in some of the most se-
vere attacks to date, as evidenced by its long-term
ranking upon this OWASP Top 10 list [24]. The so-
phistication, including its web application itself, is
an extremely familiar risk to the enterprise rather
than an unknown vulnerability. Most of the program-
ming in a typical web application is not written from
scratch or in-house. APIs, microservices, repositories,
open-source, and legacy technology are all cobbled
together as a loose array of third-party developed and
bundled components. Moreover, such components are
often a framework with several subcomponents that
must remain stable and complete for the entire web
application [24]. Many security bugs are caused by
ancillary program dependencies that have identified
problems that have been ignored, acknowledged as a
possibility, or are not correctly handled. These flaws
are frequently other OWASP Top 10 problems like
Cross-Site Scripting and Injection.

Online technologies are often regarded as forerun-

ISeCure



November 2021, Volume 13, Number 3 (pp. 59–67) 63

Table 2. Terminologies in components with vulnerabilities

Terminology Definition

Threat Agents

The term threat agent is used to denote an individual or group that can manifest a threat as a party that

causes harm to an organization, or seeks to do so. Threat actors may relate to their targets internally,

externally, or as partners, and their goals may differ. External threats can be individuals, groups, or

organizations and sometimes hostile agents.

Hacktivism is a form of “hacktivism” in which people try to hack into computers and steal data from them.

The intent and method targeted at the intentional exploitation of a vulnerability or a situation and

the method that may accidentally trigger a vulnerability. Synonymous with Threat Agent.

Attaché’s Approach

The attacker identifies a weak component through scanning or annual analysis. It gets more complex to identify

if the used component is deep in the application Attackers need to access only a few accounts or just a single

system admin account. This can authorize money according to the scope of the application.

Misconfiguration attacks: as a result of faulty administration of such systems, hackers have a field day around an

incorrectly configured system. Due to the intricacies of today’s systems, not very well-trained administrators are

caught by hackers.

Operating systems attack: because of the intricacies of current networks, operating systems operate

several services, ports, and access modalities. Large service deals are also maintained when the

default settings of operating systems in the installation process are implemented. Hackers,

therefore, search for and exploit flaws in operating systems to obtain unauthorized access to network systems.

Security weakness

Virtually all the applications have these issues because most development teams don’t

focus on ensuring their components/libraries are up to date and are often used in cybersecurity.

It is crucial to understand the distinction between these terminologies. It permits enterprises to implement the

cybersecurity operations and controls correctly, and document and evaluate them.

Here, we examine safety vulnerabilities in more detail.

Suppose an attacker can identify the unsafe components of a program. In this situation, the assault is immediately

misused as exploit methods are already on the internet and must be employed by the attacker. This can result

in a slight consequence, serious or even complete breach of data, or even a takeover of the server/host for companies.

How to spot

Easier when the library file is at the topmost layer of the app. It became difficult as it becomes deeper

Track your code security against standard OWASP & SANS categories.

While some known vulnerabilities have little effect on the use of known vulnerabilities in components,

some of the largest infringements yet have been reported. Perhaps this danger should be at the top of the

list depending on the assets you protect.

Technical impact

A full range of weaknesses is possible including injection, broken access control, XSS, etc.

The impact could range from minimal to complete host takeover and data.

Making Your Information Technology Effective and Keeping It.

In the application, components like libraries and frameworks nearly usually work with full rights.

It makes it easier for a hacker to inflict serious data loss or server takeover if a susceptible component is used.

Business impact

It could be trivial or it could mean a complete compromise

Loss of customer confidence and credibility

Data loss and goodwill damage

Experts claim that online financial transactions are the companies most at risk.

Business loss

Closing temporarily or permanently

Exposure to arbitration or legal proceedings

Headlines for all the wrong reasons

ners of the modern age. We think about digital goods
and facilities as brand-new, fully functional machines.
The issue is that these robots look very much like
pickup trucks. There have been gaps in the uphol-
stery, common engine problems, and rusted parts.
Imagine that many pieces of such a startup machine
rust, wear out, and crack at varying rates to get a
clearer view of web applications [25]. These compo-
nents deteriorate gradually over time, while others
become obsolete almost instantly. Sections of it are
to be replaced regularly. It would not work correctly
otherwise. It is the same for tech in that it has to be
maintained to continue to function correctly. Software
that is readily accessible protects the confidentiality

of the records, which keeps private information pri-
vate is readily available. You can make apps more
usable by making them more stable.

The objective is to dedicate time and energy to
a vulnerability detection strategy. The first step is
to learn everything you can about the web applica-
tions you already have, including what they are do-
ing, how they deal with one another, and so on, and
which libraries they depend on. Without a clear un-
derstanding of what a web application does and how
knowledge flows through it, it is difficult to make sig-
nificant scale security changes. It would be beneficial
if you already took note of the collection used within
a client or server program [26, 27].

ISeCure



64 OWASP Components with Known Vulnerabilities: A Comprehensive Study — Albulayhi and Ibrahim

You will need to cut the fat until you know the
application’s intended feature. Unused dependencies,
redundant functionality, unreferenced files, and meta-
data must be removed. This reduces the security vul-
nerabilities of the submission and makes it easier
to manage. Several resources are available to help
diagnose this, including retire.js and dependability.
Many package managers, such as npm, can inspect
dependencies. There is more than enough open-source
tooling available in this area as well. Continuing to
monitor the programs for end-of-life (EOL) apps and
unmaintained systems and libraries would be benefi-
cial. These dependencies must be eliminated as soon
as they are discovered. When all of the fat has been
eliminated, a procedure should be put in place to up-
grade any components that are old or considered to
be insecure.

Finally, we must avoid incorporating insecure el-
ements into the web program. Just obtain new de-
pendencies with authoritative reports through secure
channels when bringing them in. New modules can
still be enabled if they include functionality not al-
ready provided by anyone else in the app. It is unreal-
istic to expect never to use third-party dependencies;
by limiting oneself to components written and man-
aged in-house, we will become inefficient and sacrifice
the competitive advantage.

We will have a mechanism for deleting components
from our framework that have identified bugs if we
follow these procedures. There is another advantage
of having this mechanism in place: we will monitor
and fix any glitches that arise with the submission.
Security flaws are glitches that compromise the avail-
ability, honesty, or secrecy of a device. One kind of
bug fix is security fixes. We will keep the web ap-
plication stable and usable by implementing a solid
patch management program. Cyber-terrorism vul-
nerabilities and attacks emerge every day, placing
Cyber-terrorism vulnerabilities and attacks emerge
every day, placing customers in danger except some
of them are zero-day vulnerabilities. Most of these
risks are caused by software dependencies, such as us-
ing libraries and applications that have already been
identified as insecure or become vulnerable due to
unencrypted software patches or changes that are not
introduced on time.

Most third-party modules and frameworks used in
an application are run with maximum rights. The
attackers may use automatic search tools or do a
manual inspection of the program to detect bugs.
Suppose they discover that the application uses a
previously identified feature as insecure. In that case,
they can quickly develop strategies to mitigate that
vulnerability and determine the effect and benefit

Figure 3. Vulnerability components in IT infrastructure

ahead of time. To find the dependencies, the hackers
use fingerprinting techniques such as searching for
recognized HTML components, causing errors, forcing
browsing, and so on.

4.1 Impact on Businesses Using
Components with Known
Vulnerabilities

Along with it being easily available, this weakness
poses a significant danger for any corporation. Sup-
pose an attacker can identify the insecure components
that a given program uses. In that case, the attack is
quickly abused because the exploit methods are now
available on the internet, and the attacker has to use
them. This can result in a minor effect, severe or even
complete data breach, or even server/host takeover
for organizations.

This flaw can easily circumvent device security de-
fenses and serve as a pivoting point for various other
attacks, such as invoking a web server with complete
approval without having a permission token or ex-
ecuting code remotely. Injection, XSS, and compro-
mised access control are all vulnerabilities when using
insecure elements, as in Figure 3.

System vulnerability is a failure in the design or ex-
ecution, via loss of confidentiality, integrity, or avail-
ability, of an information system that can be used
deliberately or involuntarily to adversely affect the
operations or assets of an organization. System vulner-
abilities are based on application loopholes/software
or restrictions connected to human use. That shows
that no system can potentially achieve the status of
total immunity against possible violations of security.
It is commonly stated that there is nothing that can
be done to get a hacker inside your system or network.
Maybe, all the possible ways to make the hacker more
difficult to break the security of the system are to
be exhausted. This study addressed certain ways to
expose networks to malicious attacks and suggested
techniques to curb or contain these possibilities. In

ISeCure



November 2021, Volume 13, Number 3 (pp. 59–67) 65

the future, we will look into the cloud and distributed
computing vulnerabilities [28, 29].

4.2 Past Victims and Prevention

Amongst the most common vulnerabilities is a breach
caused by existing insecure components, as in Figure 4.
Listed below only samples from a lot of small names
on the survivor list:

• Hack at a US credit bureau “Equifax” due to
an unsecured “Apache Struts web system CVE-
2017-5638”

• Infringement at Mossack Fonesca (the law firm
that handled the Panama Papers): an unsecured
edition of Drupal CMS was used.

• Breach of the Ubuntu forums - unpatched Fo-
rum runner add-on

• Vertical Scope (internet media company) - old
vBulletin forum software was used. The protec-
tion flaw here is that most production teams
do not check whether the elements/collections
remain advanced

• Citations: know the purpose and arrange thor-
ough citations of all the modules (Operating
system, HTTP server, libraries, network re-
sources, and so on) and latest editions utilized
through the program, and get convinced to be
supported.

• Track and validate compliance evaluations daily.
• Assessments: conduct internal and external vul-

nerability assessments and penetration testing
regularly to ensure that the application is safe.

• Patch management scheme: implement a proper
patch management scheme, ensuring that only
reputable suppliers provide upgrades and se-
curity patches and remove any unnecessary or
redundant modules to harden the program.

• Check that the modules and the subcomponents
are secure and up to date.

◦ Make use of the OWASP Dependency
Framework. Check to see if all of the mod-
ules you are using have a widely known
flaw.

◦ Install a Web Application Firewall to pro-
vide layered protection.

5 Conclusion

On the HTTP protocol level, we can use AWS WAF
to prevent existing web apps against different attack
vectors properly. In terms of OWASP security bugs,
AWS WAF is incredibly efficient at minimizing weak-
nesses to the point that these attack patterns can
be detected in HTTP queries. We may also combine
AWS WAF’s capabilities with other AWS providers
to build robust security automation. The AWS WAF

Security Automations is a group of such tools found
on our website. These tools allow us to create a series
of defenses that can adapt to the various types of
attacks that your applications can face. In the form
of a Cloud Formation template, the solution offers
several easy-to-deploy automation for rate-based IP
blacklisting, credibility list IP blacklisting, scanner
and probe prevention, bot and scraper tracking, and
blocking. It is critical to ensure that our project does
not have any high-risk bugs added by third-party
modules, which developers frequently ignore. Setting
up an automated method to compare dependencies
to a vulnerability database will go a long way toward
avoiding security breaches.

References

[1] Akbar Iskandar, Muhammad Resa Fahlepi Tu-
asamu, Suryadi Syamsu, M Mansyur, Tri Listy-
orini, Sulfikar Sallu, S Supriyono, Kundharu
Saddhono, Darmawan Napitupulu, and Robbi
Rahim. Web based testing application security
system using semantic comparison method. In
IOP Conference Series: Materials Science and
Engineering, volume 420, page 012122. IOP Pub-
lishing, 2018.

[2] Sangeeta Nagpure and Sonal Kurkure. Vulnera-
bility assessment and penetration testing of web
application. In 2017 International Conference
on Computing, Communication, Control and Au-
tomation (ICCUBEA), pages 1–6. IEEE, 2017.

[3] A Muller, M Meucci, E Keary, D Cuthbert, et al.
Owasp testing guide 4.0. Maryland (USA): The
OWASP Foundation, 4:165–166, 2014.

[4] OWASP. Owasp top 10 no. 9 using components
with known vulnerabilities, 2021. Accessed 18
February 2022.

[5] Vincent C Hu, Michaela Iorga, Wei Bao, Ang Li,
Qinghua Li, Antonios Gouglidis, et al. General
access control guidance for cloud systems. NIST
Special Publication, 800(210):50–2ex, 2020.

[6] Jasper van Vliet. Direct and indirect loss of nat-
ural area from urban expansion. Nature Sustain-
ability, 2(8):755–763, 2019.

[7] Narayanan Anantharaman and Bharati
Wukkadada. Identifying the usage of known
vulnerabilities components based on owasp a9.
In 2020 International Conference on Emerging
Smart Computing and Informatics (ESCI),
pages 88–91. IEEE, 2020.

[8] Philip Sarrel, David Portman, Patrick Lefebvre,
Marie-Hélène Lafeuille, Amanda Melina Grittner,
Jonathan Fortier, Jonathan Gravel, Mei Sheng
Duh, and Peter M Aupperle. Incremental di-
rect and indirect costs of untreated vasomotor
symptoms. Menopause, 22(3):260–266, 2015.

[9] Tony B Amos, Neeta Tandon, Patrick Lefeb-

ISeCure



66 OWASP Components with Known Vulnerabilities: A Comprehensive Study — Albulayhi and Ibrahim

Figure 4. Samples of past victims and prevention cases

vre, Dominic Pilon, Rhiannon L Kamstra, Irina
Pivneva, and Paul E Greenberg. Direct and
indirect cost burden and change of employ-
ment status in treatment-resistant depression:
a matched-cohort study using a us commercial
claims database. The Journal of clinical psychi-
atry, 79(2):5360, 2018.

[10] Flora Angeletaki, Andreas Gkogkos, Efstratios
Papazoglou, and Dimitrios Kloukos. Direct ver-
sus indirect inlay/onlay composite restorations
in posterior teeth. a systematic review and meta-
analysis. Journal of dentistry, 53:12–21, 2016.

[11] VS Kumar. Ethical hacking and penetration test-
ing strategies. International Journal of Emerging
Technology in Computer Science & Electronics
(IJETCSE), 11(2):0976–1353, 2014.

[12] Te-Shun Chou. Security threats on cloud com-
puting vulnerabilities. AIRCC’s International
Journal of Computer Science and Information
Technology, 5(3):79–88, 2013.

[13] Gary Wassermann and Zhendong Su. Static
detection of cross-site scripting vulnerabilities. In
2008 ACM/IEEE 30th International Conference
on Software Engineering, pages 171–180. IEEE,
2008.

[14] OWASP. Top 10–2017 a9-using components with
known vulnerabilities, 2021. Accessed 18 Febru-
ary 2022.

[15] Dimitris E Simos, Jovan Zivanovic, and Manuel
Leithner. Automated combinatorial testing for
detecting sql vulnerabilities in web applications.
In 2019 IEEE/ACM 14th International Work-
shop on Automation of Software Test (AST),
pages 55–61. IEEE, 2019.

[16] Kannan Balasubramanian. Web application vul-
nerabilities and their countermeasures. In Cryp-
tographic Solutions for Secure Online Banking
and Commerce, pages 209–239. IGI Global, 2016.

[17] SE Idrissi, N Berbiche, F Guerouate, and M Shibi.
Performance evaluation of web application se-
curity scanners for prevention and protection
against vulnerabilities. International Journal
of Applied Engineering Research, 12(21):11068–
11076, 2017.

[18] Tomohisa Ishikawa and Kouichi Sakurai. Param-
eter manipulation attack prevention and detec-
tion by using web application deception proxy.

In Proceedings of the 11th International Con-
ference on Ubiquitous Information Management
and Communication, pages 1–9, 2017.

[19] Nenad Jovanovic, Engin Kirda, and Christopher
Kruegel. Preventing cross site request forgery
attacks. In 2006 Securecomm and Workshops,
pages 1–10. IEEE, 2006.

[20] Henrik Plate, Serena Elisa Ponta, and Antonino
Sabetta. Impact assessment for vulnerabilities
in open-source software libraries. In 2015 IEEE
International Conference on Software Mainte-
nance and Evolution (ICSME), pages 411–420.
IEEE, 2015.

[21] Muhammad Noman, Muhammad Iqbal, and
Amir Manzoor. A survey on detection and pre-
vention of web vulnerabilities. International
Journal of Advanced Computer Science and Ap-
plications, 11(6):521–540, 2020.

[22] Emil Semastin, Sami Azam, Bharanidharan
Shanmugam, Krishnan Kannoorpatti, Mirjam
Jonokman, Ganthan Narayana Samy, and Sun-
dresan Perumal. Preventive measures for cross
site request forgery attacks on web-based appli-
cations. International Journal of Engineering
and Technology (UAE), 2018.

[23] S Shalini and S Usha. Prevention of cross-site
scripting attacks (xss) on web applications in the
client side. International Journal of Computer
Science Issues (IJCSI), 8(4):650, 2011.

[24] OWASP. Owasp press release, 2021. Accessed
18 February 2022.

[25] OWASP. Clm press release, 2021. Accessed 18
February 2022.

[26] OWASP. Sonatype’s owasp a9 blog post, 2021.
Accessed 18 February 2022.

[27] Timothy Casey, Patrick Koeberl, and Claire
Vishik. Defining threat agents: Towards a more
complete threat analysis. In ISSE 2010 Secur-
ing Electronic Business Processes, pages 214–225.
Springer, 2011.

[28] Raymond AJ Brown and Peter D Renshaw. Col-
lective argumentation: A sociocultural approach
to reframing classroom teaching and learning.
2000.

[29] Oludele Awodele, Ernest Enyinnaya Onuiri, and
Samuel O Okolie. Vulnerabilities in network in-
frastructures and prevention/containment mea-

ISeCure



November 2021, Volume 13, Number 3 (pp. 59–67) 67

sures. In Proceedings of Informing Science & IT
Education Conference (InSITE), 2012.

Mohammed Sulaiman M. Albu-
layhi graduate as a computer engi-
neer since 2016, he was working as a
teaching assistance in prince Sattam
University. He is currently a master
student in cybersecurity program at
Department of Information Technol-

ogy, College of Computer, Qassim University, Buray-
dah, Saudi Arabia.

Dina M. Ibrahim Assistant Pro-
fessor at Department of Information
Technology, College of Computer,
Qassim University, Buraydah, Saudi
Arabia from September 2015 till now.
In addition, Dina works as an Assis-
tant Professor in the Computers and

Control Engineering Department, Faculty of Engi-

neering, Tanta University, Egypt. She was born in
the United Arab Emirates, and her B.Sc., M.Sc., and
Ph.D. degrees have taken from the Computers and
Control Engineering Department, Faculty of Engi-
neering, Tanta University in 2002, 2008, and 2014, re-
spectively. Dina works as a consultant engineer, then
a Database administrator, and finally acts as a vice
manager on Management Information Systems (MIS)
Project, Tanta University, Egypt, from 2008 until
2014. Her research interests include networking, wire-
less communications, machine learning, security, and
the Internet of Things. She is serving as a reviewer
in Wireless Network (WINE) the Journal of Mobile
Communication, Computation, and Information since
2015, and recently in the International Journal of Sup-
ply and Operations Management (IJSOM). Dina has
also acted as a Co-Chair of the International Tech-
nical Committee for the Middle East Region of the
ICCMIT conference since 2020.

ISeCure


	1 Introduction
	2 Literature Review of Components with Known Vulnerabilities
	2.1 Establish an Internal Security Policy
	2.2 Identifying Affected Components

	3 Preventive Mechanisms for Components with Known Vulnerabilities
	4 Discussion and Findings
	4.1 Impact on Businesses Using Components with Known Vulnerabilities
	4.2 Past Victims and Prevention

	5 Conclusion

