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Abstract

In this paper we present a new finite field-based public key cryptosystem
(NETRU ) which is a non-commutative variant of CTRU. The original CTRU is
defined by the ring of polynomials in one variable over a finite field F2. This
system works in the ring R = F2[x]/〈xN − 1〉 and is already broken by some
attacks such as linear algebra attack. We extend this system over finite fields Zp,
where p is a prime (or prime power) and it operates over the non-commutative
ring M = Mk(Zp)[T, x]/〈Xn − Ik∗k〉, where M is a matrix ring of k by k

matrices of polynomials in R = Zp[T, x]/〈xn− 1〉. In the proposed NETRU, the
encryption and decryption computations are non-commutative and hence the
system is secure against linear algebra attack as lattice-based attacks. NETRU
is designed based on the CTRU core and exhibits high levels of security with
two-sided matrix multiplication.

c© 2018 ISC. All rights reserved.

1 Introduction

S ome secure communications are provided by
the concept of public key cryptography over

non-secure channels. Public key cryptography was
first presented by Diffie and Hellman in 1976 [1].
So far several public key cryptosystems have been
proposed that their underlying security is based on
solving some number theoretic and group theoretic
problems such as: the integer factoring problem
(IFP), the discrete logarithm problem (DLP) in a
certain finite group [2], algebraic coding theory [3],
the intractability of elliptic curve and the variants
of Matsumoto-Imai cryptosystems [4], multivariable
polynomials and presumed hardness of lattice prob-
lems, the most basic of which are the shortest vector
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problem (SVP) and the closest vector problem (CVP)
[6]. Lattice-based cryptography as a post-quantum
field in cryptography has some advantages such as:
very strong security proofs, efficient implementations,
great simplicity, as well as efficiency in terms of
computational and space complexity.

In the recent years, some lattice-based construc-
tions have been presented that their security comes
from the conjectured worst-case hardness of lattice
problems which are the foundations for public-key en-
cryption [7], digital signatures [9–11], identity-based
encryption [12, 13], fully homomorphic encryption
[14], and authors’ schemes [34–37], and much more.

The NTRU public key cryptosystem officially in-
troduced in 1998 [15]. NTRU is classified as a lattice-
based cryptosystem since its security is based on in-
tractability of solving shortest vector problem and
closest vector problem in a particular type of lattices
called Convolutional Modular Lattices (CML) related
to the quotient ring Z[x]/〈xN − 1〉. Thus, most in-
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volved attacks against NTRU are based on lattice re-
duction techniques [16] and Chinese Remainder The-
orem (CRT) [17]. In a lattice attack, the attacker is
trying to find the original key or an alternative key
which can be applied instead of original key to de-
crypt ciphertext with some more computational com-
plexity. In NTRU, every element of the mentioned
ring is a polynomial, hence the multiplication of two
polynomials is based on linear transformation with
O(N2) operations. Note that one can use Fast Fourier
Transforms (FFT’s) for optimization since these op-
erations are on small integers, allowing for further
speed optimizations. Therefore, the speed of NTRU is
one of its considerable features. NTRU executes dras-
tically faster than both RSA and ECC at relatively
the same security levels [15].

The standard number (version) of NTRU is IEEE
P1363.1 [18]. NTRU encryption mainly consists of
vector multiplications which is called vector convo-
lutions, a very simple operation without extra com-
putations. This operation is fundamentally different
from both RSA and elliptic curve cryptography, and
NTRU has some efficiency advantages over them.
NTRU has been cryptanalyzed heavily by the cryp-
tographic community, and some interesting results
can be found in [17, 19] and some extensions based
on non-commutative algebra were proposed in [20].
For improving the security of NTRU, some variants
have been proposed using polynomial rings with co-
efficients in rings other than Z. The most important
of these is QTRU, based on Quaternion algebra [21]
and authors’ lattice-based schemes [34, 35]. In [22],
we can find a generalization of NTRU by the ring of
polynomials over the binary field F2 which is called
CTRU. Although CTRU is based on GF (2k)[x], in
[22] never had a desirable result and was broken soon
after [23], it showed the idea of replacing NTRU al-
gebraic structure with other rings and algebras. We
believe that the basic concept on which the CTRU
cryptosystem pivots is totally abstract and can be
extended to a broader finite fields than F2 such as
Zp, where p is prime (or prime power).

The CTRU scheme can be summarized as follows
[22]:

Let A := F2[T ] be polynomials in one variable T
over the binary finite field F2 and let R = A[x]/〈xN−
1〉 be the convolution polynomial ring defined over
F2[T ]. Hence, an element of R is reflected as: f(x) =
f0(T ) + f1(T )x+ . . .+ fN−1(T )xN−1 where the co-
efficient of xi′s for each 0 ≤ i ≤ N − 1 are: fi(T ) =
fi0 + fi1T + . . .+ fikiT

ki that for all 0 ≤ j ≤ ki, we
have: fij ∈ F2. Assume that 〈P 〉 and 〈Q〉 are ide-
als generated by irreducible polynomials P and Q
with degrees s and t, respectively where gcd(s, t) = 1

and 2s ≤ s < t, such that F2s ∩ F2t = F2. Obvi-
ously, we have the quotient rings AP := A/〈P 〉 and
AQ := A/〈Q〉 are isomorphic to finite fields of or-
der 2s and 2t, respectively. Thus the quotient rings
RP := R/〈P 〉 and RQ := R/〈Q〉 are isomorphic to
F2s[T, x]/〈xN − 1〉 and F2t[T, x]/〈xN − 1〉, respec-
tively. Suppose the set of all coset representatives for
each equivalence class modulo 〈Q〉 by l ⊂ R. If cer-
tain restrictions are imposed on the coefficients of
f, g,Φ and m such that the result of P · g · Φ +m · f
lies exactly in l (i.e., P · g · Φ +m · f mod 〈Q〉 is ex-
actly equal to P · g · Φ + m · f ∈ R), then one can
easily switch from R/〈Q〉 to R/〈P 〉 and follow the
rest of the encryption and decryption calculations.
The security of CTRU relies on a special instance of
the shortest pair of vectors problem (SPVP), that is,
it’s security is heuristic.

In this paper, we present a non-commutative ex-
tension of CTRU, called NETRU. Our focus involves
extension to non-commutative groups instead of using
group algebra over Z2. We will prove that our pro-
posed NETRU based on non-commutative algebra is
not only feasible but also it has higher security com-
pared to commutative version of CTRU and NTRU
encryption scheme.

The NETRU cryptosystem uses a more efficient
linear transformation while providing a security
level higher than that of CTRU. NETRU oper-
ates with appropriate selection of prime p for finite
field Zp. It works in the non-commutative ring
M = Mk(Zp)[T, x]/〈Xn − Ik∗k〉, where M is a
matrix ring of k by k matrices of polynomials in
R = Zp[T, x]/〈xn − 1〉. As matrix multiplication in
NETRU is strictly non-commutative and because of
two-sided matrix multiplication, search space will
be square times than that of CTRU, and then the
lattice attack will be extremely hard due to the high
dimension of lattice. We can compare an instance of
CTRU with NETRU when nk2 = N . Encryption and
decryption in CTRU requires O(N2t2) or O(n2k4t2)
operations for a message block with length of N ,
but in NETRU for the same bit of information we
need O(n2k2.807t2) or O(n2k2.376t2) operations if we
use Strassen’s or Coppersmith algorithms for matrix
multiplication, respectively. Also since RSA requires
O(N3) operations in the best case for encryption
and decryption, so NETRU will be faster than RSA
crypto scheme.

The rest of this paper is organized as follows: Sec-
tion 2 presents some notations, constructions of ir-
reducible polynomials over finite fields and degree
estimation for analysis. In Section 3, the main pa-
rameter constraints which are required for a reliable
encryption/decryption is presented and the proposed
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NETRU cryptosystem is described. Details of the se-
curity analysis of NETRU is given in Section 4. Sec-
tion 5 shows performance analysis and comparison
with CTRU and NTRU. Finally, the paper concludes
in Section 6.

2 Notations

NETRU cryptosystem operates over the ring M =
Mk(Zp)[T, x]/〈Xn − Ik∗k〉 of k by k matrices of el-
ements in the ring R = Zp[T, x]/xn − 1〉. Let n be
a positive integer so a typical element of R can be
represented as:

f(x) = f0(T )+f1(T )x+f2(T )x2+· · ·+fn−1(T )xn−1

(1)
where for each 0 ≤ i ≤ n− 1 the coefficient of xi

′
is:

fi(T ) = fi0 + fi1T + fi2T
2 + . . .+ fizT

z

fij ∈ Zp = {0, 1, . . . , P − 1}, where 0 ≤ j ≤ z. (2)

Addition (+) in R is performed component wise, and
multiplication is a circular convolution. Let P and Q
be two irreducible polynomials of Zp[T, x] of degree s
and t, respectively such that 2 ≤ s ≤ t and gcd(s, t) =
1. It is worth observing that the quotient rings AP :=
Zp[T, x]/〈P 〉 and AQ := Zp[T, x]/〈Q〉 are isomorphic
to finite fields of order ps and pt,respectively. Since
P and Q are irreducible polynomials then 〈P 〉 and
〈Q〉 are maximal ideals, therefore Zp[T, x]/〈P 〉 and
Zp[T, x]/〈Q〉 are finite fields then the existence of
a division algorithm gives us several useful prop-
erties. Thus the quotient rings RP := R/〈P 〉 and
RQ := R/〈Q〉 are isomorphic to Zs

p[T, x]/〈xn − 1〉
and Zt

p[T, x]/〈xn − 1〉 respectively. By the arithmetic
constraint gcd(s, t) = 1 we see that Zs

p ∩ Zt
p = Zp.

For any polynomial f ∈ R, let degT (f) denote the
maximum degree of the coefficients of x in T . In other
words, degT (f) is computed for f as a polynomial in
t . Note that since deg(f+g) = max{deg(f),deg(g)},
the function “deg" over Zp[T, x] is a Euclidean norm
which gives unique quotient and remainder.

2.1 Irreducibility Tests Over Finite Fields
ZP

For a prime (or prime power) p and an integer n ≥ 2,
let Zp be a finite field with p elements, and Zn

p be
its extension of degree n. Extensions of finite fields
are important in implementing cryptosystems and
error correcting codes such as our proposed NETRU.
As an example, a probabilistic algorithm for finding
irreducible polynomials that works well in practice is
presented in [24]. Let f ∈ Zp[T, x], degT (f) = n, be
a polynomial to be tested for irreducibility. Assume
that p1, . . . , pk are the distinct prime divisors of n.
In practice, there are two general approaches for this
problem:

• Rabin: f is irreducible iff gcd(f, xp
n/pi − x) = 1

for all 1 ≤ i ≤ k, and xpn − x ≡ 0 mod f (see
[24]).
• Butler: f is irreducible iff dim ker (Φ− I) = 1,
where Φ is the Frobenius map on Zp[T, x]/〈f〉
that sends ∈ Zp[T, x]/〈f〉 to hp ∈ Zp[T, x]/〈f〉,
and i is the identity map on Zp[T, x]/〈f〉 (see
[25]).

Other irreducibility tests can be found in [26, 27].
We concentrate on Rabin’s test and its variant pre-
sented in [28].
Theorem 1 ([28]). The proposed variant of Rabin’s
algorithm correctly tests for polynomial irreducibil-
ity, and uses O(nM(n) log p) operations in Zp, where
M(n) = n log n log log n.

2.2 Degree Estimation

We define length of an element Ψ ∈ M =
Mk(Zp)[T, x]/〈Xn − Ik∗k〉 to be:

|Ψ|= max{degT (polys ·m ∈ Ψ)} (3)

The length of matrices Ψ ∈M is the maximum de-
gree in any of k2 polynomials of it. We say a matrix
Ψ ∈M is small if |Ψ|degT (P ). When small matrices
are multiplied together, we get a matrix which has
a length greater than P but is still almost certainly
smaller than Q. The definitions for length and short-
ness apply similarly to polynomials in R. For f ∈ R:

|f |= max{degT (f)} (4)

The polynomial f is said to be small if f |degT (P ).
We also define the degree of an element Ψ ∈M to be:

Deg(Ψ) = {degT (polys ·m ∈ Ψ)} (5)

3 NETRU Cryptosystem

3.1 Parameter Creation

NETRU cryptosystem depends on six positive in-
teger parameters (n, k, df , dg, db, dΦ). Let P and
Q be two irreducible polynomials of Zp[T, x] of
degree s and t respectively such that 2 ≤ s < t
and gcd(s, t) = 1; df , dg, db, dΦ ≤ t, and six sets of
matrices (Lf , Lg, Lb, LΦ, Lw, Lm) ⊂ M. The set of
matrices (Lf , Lg, Lb, LΦ, Lw, Lm) consists of all ma-
trices of polynomials in the ring R = Zp[T, x]/〈xn−1〉.
Define the set L(d) as:

L(d) = {f ∈ R |degT (f) < d} (6)

Lemma 1. The set L(d) has pnd elements.

Proof. A typical element of L(d) looks like:

f(x) = f0(T )+f1(T )x+f2(T )x2+. . .+fN−1(T )xn−1

(7)
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where for each 0 ≤ i ≤ n−1 the coefficient of xi’s are:

fi(T ) = fi0 + fi1T + fi2T
2 + . . .+ fizT

z

fij ∈ Zp = {0, 1, . . . , p1}, where 0 ≤ j ≤ z.

Hence, applying the elementary counting tech-
niques, we get exactly pd choices for each fi. Since
the degree in x of f is at most n− 1, there are pnd
different possibilities for f .

3.2 Key Generation

Suppose that Bob wants to create his set of public
and private keys. He randomly chooses f ∈ Lf :=
L(df + 1), g ∈ Lg := L(dg + 1), b ∈ Lb := L(db + 1),
and w ∈ Lw, where Lw is a short matrix. Note that
matrices f should be invertible modulo both P and Q.
Matrices g and b should also have inverse modulo P .
We denote these inverses by notation FP , FQ, GP , BP

respectively.

fFQ ≡ I (mod Q),

gGP ≡ I (mod P ),

GQg ≡ I (mod Q),

BP b ≡ I (mod P ). (8)

Then Bob computes the matrices h and H as follows:

h ≡ wGQ (mod Q) (9)
H ≡ FQb (mod Q) (10)

Therefore (h,H) ∈M and (f, g, b) are Bob’s sets of
public and private keys.

3.3 Parameter Constraint

There are some requirements for true parameter se-
lection that we describe them as follows:

In order to eliminate decryption failure, fΦw and
bmg should be small. For preventing a private key
attack, we choose f , g and b similar to NTRU method.
Appropriate selection of Φ and m prevent plain text
attack.

It is important in decryption that fΦw and bmg are
not chosen too large so we should keep |PfΦw+bmg|
small. For security reasons, it is the key point that
w, remains secret from attacker. Also:

Deg(w) ' Deg(m)

Deg(PfΦw) ' Deg(bmg) (11)

As already described, we are selecting f from Lf ,
g from Lg, b from Lb, w from Lw, and m from Lm

which gives df = dΦ = dg = db = [t− 2s− 1/4], that
ensures to maximize the number of possible choices
for polynomials of these matrices.

3.4 Encryption

Alice chooses her message m ∈ Lm := L(s) and then
she randomly chooses a matrix Φ ∈ LΦ := L(dΦ + 1).
She encrypts the message as:

e ≡ PΦh+Hm (mod Q) (12)

and then she sends e to Bob.

3.5 Decryption

In order to decrypt the cipher text, Bob first needs
to compute:

a ≡ feg (mod Q)

≡ f(PΦh+Hm)g (mod Q)

≡ fPΦhg + fHmg (mod Q)

≡ PfΦwGQg + fFQbmg (mod Q)

≡ PfΦw + bmg (mod Q) (13)

If a is equal to the non-modular expression PfΦw +
bmg, Bob can compute the matrix C:

C ≡ a (mod Q),

C ≡ bmg (mod P ). (14)

Finally, Bob uses his other private keys BP and GP

to recover m as:

D ≡ BP bmgGP (mod P ),

D ≡ m (mod P ). (15)

Clearly, D and the non-modular m are equal if and
only if each coefficient in the latter has degree less
than degT (Q).
Lemma 2. It is enough to have 2s + df + dΦ ≤ t
and db + s+ dg ≤ t simultaneously, for the decryption
process to be successful.

Proof. If degT (PfΦw + bmg) is less than degT (Q),
reduction modulo polynomial Q would not change
PfΦw + bmg. Since it has two components, we need
each of them to be of degree less than t. Using,
d(a+ b) ≤ max{d(a), d(b)} for all a, b ∈ Zp[T, x], we
conclude:

degT (PfΦw + bmg) ≤ degT (Q) = t

⇔ degT (PfΦw) ≤ t and degT (bmg) ≤ t
s+ df + dΦ + s ≤ t and db + s+ dg ≤ t
⇔ 2s+ df + dΦ ≤ t and db + s+ dg ≤ t.

which completes the proof.

4 Security Analysis

4.1 Brute Force Attack

To conduct a brute force attack against NETRU, at-
tackers who know the public parameters, including
the public key h ≡ wGQ and H ≡ FQb and also,
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b, n, k, df , dg, db, dΦ, P and Q. For obtaining the en-
tire possible keys in f ∈ Lf and g ∈ Lg so that hg
(mod Q), fH (mod Q) and b (mod Q), it is neces-
sary to find the private keys f , g and b correctly
and a short key using these private keys. Therefore,
searching pair of (f, g) that f and g are determined
by 2k2 polynomials are needed. The size of the key
space Lf (' Lg) is calculated as follows:

#Lf =

(
n

df

)2k2(
n− df
df

)2k2

=

[
n!

(df ! )2(n− 2df )!

]2k2

,

#Lg =

(
n

dg

)2k2(
n− dg
dg

)2k2

=

[
n!

(dg! )2(n− 2dg)!

]2k2

.

(16)

Here df and dΦ are defined by assuming Lf and
LΦ contains polynomials from the set of polynomi-
als L(df + 1) and L(dΦ + 1), respectively. Note that
just like CTRU, f , g and all of their scalar rotations
(xi · f, xi · g) can be served as decryption key. Using
Meet-in-The-Middle attack [29] the search time could
be reduced to

√
#Lf/nk2 if sufficient memory is pro-

vided. Since the total state space which an attacker
has to search for an encryption key is about #Lf/nk

2.
Similarly, the same attack can also be done against
a given message by testing all possible Φ ∈ LΦ and
search for the matrices e− Φh (mod Q) which con-
tains polynomials with small entries. Thus, the mes-
sage security is #LΦ/nk

2 for brute force attack and√
#LΦ/nk2 for Meet-in-The-Middle attack, where:

#LΦ =

[
n!

(dΦ! )2 (n− 2dΦ) !

]2k2

(17)

Based on parameter choosing method in NTRU and
by applying it in the NETRU, our proposed cryp-
tosystem seems to be completely secure against the
brute-force attack. Meet-in-The-Middle attack can-
not be operated on NETRU because computations
involved in decryption are non-commutative.

4.2 Chosen Ciphertext Attacks

Because of similarity among NETRU, CTRU and
NTRU, the security and survivability of our proposed
cryptosystem against adaptively chosen ciphertext
attacks [30] is exactly equivalent to NTRU, then one
can use prevention techniques [31] for NETRU.

4.3 Message Expansion

In NETRU the length of the encrypted message is
the same as CTRU and is more than the original
message and that is part of the price one has to pay
for gaining more speed in both cryptosystems. We
compute the degree parameters df , dg, db and dΦ in
Section 4, therefore the expansion ratio can be eas-
ily calculated as log |C|/log|P |= log|Q|/log|P |= t/s,

where C is the state space for the encrypted message
and P is the state space for plaintext. This should
not be a problem if the system is used in conjunction
with a symmetric cipher, merely to exchange keys.

4.4 Multiple Transmission Attack

In order to conduct Multiple Transmission Attack,
a single message m is sent multiple times by Alice
using same public key but different error values Φ ′s,
it is then possible to obtain information on the Φ ′s.
Suppose Alice transmits different encrypted massages
ei ≡ Φih+Hm (mod Q), then attacker can compute
(ei − e1)h (mod Q). Therefore recovering Φi − Φ1

(mod Q) by repeating this operation with different
ei, attacker will recover enough bits of Φ1 to allow
a brute force attack on the remaining coordinates.
Due to this attack we suggest not to use multiple
transmissions with further scrambling of particular
(underlying) message. However, this attack will work
for a single message not for any subsequent messages.
We can refer to [21] for more information about this
attack.

4.5 Algebraic Attack as a Lattice Attack

Shamir in [16] concluded if one designs a variant of
NTRU where the calculations involved during encryp-
tion and decryption are non-commutative then the
system will be secure against lattice-based attacks. In
this paper, our method involves extension of CTRU
to broader finite fields and non-commutative algebra
together for obtaining robust security against linear
algebra attack. In this section we prove that the se-
curity of NETRU relies on the intractability of the
SPVP. We can attack this cryptosystem if we find a
suitable key for decryption by expanding public key
pair h, H in which vector (fw, bg) lies as a system
of linear equations and form a lattice of dimension
2nk2 by 2nk2. In other words, we show vectors fw
and bg are the same linear transformation of public
key vectors for attack. In the following theorem we
prove that the security of the proposed scheme relies
on the intractability of SPVP in a certain type of
lattice and non-linear equations.
Theorem 2. Let (h,H) ⊂M = Mk(Zp)[T, x]/〈Xn−
Ik∗k〉, and suppose there exist a transformation θf,g
which has at least a pair of solutions fw and bg in
M , then attacker cannot make a lattice by h and H,
which contains the vectors (fw, bg).

Proof. It is clear that fw and bg are produced from
encrypted message by multiplying it by f and g from
left and right respectively. We can define the linear
map θf,g as follows:
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θf,g : M →M

h→ fhg or (h→ fw) (18)
H → fHg or (H → bg) (19)

The private key (fw, bg) viewed as a vector of length
2nk2 over Zp[T, x] belongs to the lattice LNETRU of
dimension and rank nk2. Let basis vectors produced
by the cyclic shift of the coefficients of polynomial
of the matrices h and H. The lattice LNETRU is the
Zp[T, x] span of the rows of the matrix MNETRU

defined as:

MNETRU =

 [I]nk2×nk2

[
h H

]
nk2×nk2

[0]nk2×nk2 [Q(T )I]nk2×nk2


2nk2×2nk2

(20)
One can conclude by linear transformation shown in
Equations (18) and (19) that the lattice attack is pos-
sible if and only if one can make a lattice with public
key vectors (h,H) which contains vector (fw, bg) or
if following transformation is linear:

(h,H)→ (fw, bg) (21)

We show in the following analysis that transformation
h→ fhg is not linear. Similarly, one can prove H →
fHg and (h,H)→ (fw, bg) are not linear. Consider
the multiplication of the matrices f ·h ·g = fw, where
each matrix (f, g, h, fw) having k2 short polynomials
as elements: f1 . . . fk

. . . . . . . . .

fk(k−1) . . . fk2

 ·

 h1 . . . hk

. . . . . . . . .

hk(k−1) . . . hk2

 ·

 g1 . . . gk

. . . . . . . . .

gk(k−1) . . . gk2


=

fw1,1 . . . fw1,k

. . . . . . . . .

fwk,1 . . . fwk,k

 (22)

Now we can show system of equations as follows:

g1f1h1 + gk+1f1h2 + g2k+1f1h3 + . . .+

gk(k−1)+1f1hk + g1f2hk+1 + . . .+ gk(k−1)+1f2h2k+

. . .+ gk(k−1)+1fkh
2
k = (fw)1,1

g2f1h1 + . . .+ gk(k−1)+2fkh
2
k = (fw)1,2

...
gkh1fk(k−1)+1 + g2kh2fk(k−1)+1 + . . .+

g2
khkfk(k−1)+1 + . . .+ g2

kh
2
kf

2
k = (fw)k,k

So general term can be represented as:

(fw)i,j =

ki∑
m=k(i−1)+1

k−1∑
s=0

fm(gj+sk)(h(1+s)(m−k(i−1)))

(23)
Or, another form is: (fw)i,j =

∑
flgmhz =

∑
Uzhz,

where, i, j, l,m ∈ [1, k2]; z ∈ [1, k4].

As all Uz are different so we cannot find a row
vector Xi = (x1, x2, . . . , x

2
k) that will produce vector

fw on multiplying with a Lattice represented by the
cyclic shift of the coefficients of polynomial of h. In
other words, we cannot find different vector Xi to
multiply MNETRU (V ) with v1, v2, . . . , v

2
nk to get fw

as a short lattice vector and system (23) is a hard
non-linear system of equation. We therefore conclude:

fw 6= XiLNETRU (v1, v2, . . . , v
2
nk) (24)

which completes the proof.

Thus we proved that one cannot make a lattice by
h and H, which contains the vectors (fw, bg). So lat-
tice attack will not work for NETRU cryptosystem.
Note that, in a lattice of relatively small dimension,
we can enumerate all short vectors using exhaustive
search, but beyond dimension 100, exhaustive search
is practically infeasible [32, 33]. Therefore, attacker
can use polynomial-time lattice-reduction algorithms
such as LLL algorithm or linear algebra attack. CTRU
simply replaces the role played by Z in NTRU by
F2[T ]. The role of LLL algorithm is played by Popov
form. It can be presumed that the hard lattice prob-
lem underlying NTRU becomes the elementary lin-
ear algebra problem for CTRU cryptosystem. Notice
that NETRU like CTRU enjoys the security against
attacks based on LLL algorithm or Chinese Remain-
der Theorem which are the biggest threat to original
NTRU cryptosystem. But CTRU neither give any
speed improvement over NTRU, nor security against
polynomial time linear algebra attacks.

5 Performance Analysis and
Comparison with CTRU and
NTRU

We compare the theoretical operating characteris-
tics of NETRU with those of CTRU and NTRU, as
shown in Table 1. NETRU cryptosystem depends
on four positive integer parameters (n, k, s, t) with
s and t relatively prime and six sets of matrices
(Lf , Lg, Lb, LΦ, Lw, Lm) ⊂ M. The properties are
listed in terms of the parameters (N, s, t) for CTRU
and (N, p, q) for NTRU. These should be compared
by setting N = nk2, since this equates to plaintext
message blocks of the same size.

In Table 1, since NETRU perform two-sided mul-
tiplication during decryption process, the constant
factor will be about twice higher than of CTRU and
NTRU. For popov normal form attack, NETRU needs
two public keys that each of them has double length
than that of CTRU and NTRU public keys while the
size of private keys are the same. NETRU gives sig-
nificant speed improvement over CTRU and NTRU.
We can further reduce the number of encryption and
decryption operations to O(n log nk2.376t2), if we use
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Table 1. Comparison of NETRU, NTRU and CTRU.

Characteristic CTRU [22] NTRU [15] NETRU

Plain Text Block Ns (bits) N log2 p (bits) nk2s (bits)

Encrypted Text Block Nt (bits) N log2 q (bits) nk2t (bits)

Encryption Speed O(N2t2) operations O(N2) operations O(n2k3t2) operations

Decryption Speed O(N2t2) operations O(N2) operations O(n2k3t2) operations

Message Expansion t-to-1 logp q-to-1 t-to-1

Private Key Length 2Ns (bits) 2N log2 p (bits) 2nk2s (bits)

Public Key Length Nt (bits) N log2 q (bits) 2nk2t (bits)

Key Security N !
(dg !)2(N−2dg)!

N !
(dg !)2(N−2dg)!

[
n!

(dg !)2(n−2dg)!

]2k2

(dg = df )

Message Security N !
(dΦ!)2(N−2dΦ)!

N !
(dΦ!)2(N−2dΦ)!

[
n!

(dΦ!)2(n−2dΦ)!

]2k2

Total Security Broken Secure Totally Secure

FFT for polynomial multiplication, which is consid-
erable speed improvement over CTRU and NTRU.

6 Conclusion

The CTRU scheme, a variant of NTRU encrypt over
ring R = F2[x]/〈xN − 1〉, is secure against Popov
Normal Form attack but completely insecure against
linear algebra attacks as a different form of lattice at-
tacks. We extend this system over finite fields Zp, that
it operates in the non-commutative matrix ring of k
by k matrices of polynomials in R = Zp[T, x]/〈xn−1〉.
NETRU security level is comparable to CTRU with
respect to several well-known attacks with signifi-
cant speed improvement. Also, we have shown that
NETRU cryptosystem is more secure than CTRU,
because of its lattice structure and robustness against
linear algebra attack. In this paper, we proved that
using non-commutativity in a lattice-based cryptosys-
tem is not only possible, but also if we design a
non-commutative public key cryptosystem similar to
NETRU, it will be secure and efficient. In the end, we
would like to point out that NETRU is the first step
in extension of the CTRU public key cryptosystems
with a non-commutative matrix rings in broader fi-
nite fields. Furthermore, NETRU can be generalized
to different types of rings, modules, and vector spaces,
or different kinds of algebras in order to design new
lattice-based cryptosystems and explore their possi-
ble advantages.
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