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A B S T R A C T

A multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets

among a set of participants. in such a way a multi-secret sharing scheme (MSS)

allows a dealer to share multiple secrets among a set of participants, such that

any authorized subset of participants can reconstruct the secrets. Up to now,

existing MSSs either require too long shares for participants to be perfect

secure, or do not have a formal security analysis/proof. In 2013, Herranz et al.

provided the first formal definition of computational security for multi-stage

secret sharing scheme (MSSS) in the standard model and proposed a practical

and secure scheme. As far as we know, their scheme is the only computationally

secure MSS in the standard model, and there is no formal definition of the

computational security for other categories of MSSs. Based on this motivation,

in this paper, we define the first formal model of indistinguishability against

the chosen secret attacks (CSA) for other types of MSSs in the standard

model. Furthermore, we present two practical CSA-secure MSSs, belonging to

different types of MSSs and enjoying the advantage of short shares. They are

also provably secure in the standard model. Based on the semantic security of

the underlying encryption schemes, we prove the security of our schemes.

© 2015 ISC. All rights reserved.

1 Introduction

A secret sharing scheme is a randomized protocol for
the distribution of a secret s among n participants

P = {P1, . . . , Pn} according to some access structures
Γ ⊆ 2P such that any authorized subset of participants
can reconstruct the secret value by putting their shares
together, but any unauthorized subset participants
cannot get any information about the secret s.

In the literature we deal with two different nota-
tions of secrecy according to the meaning of “any in-
formation” in the above formulation. One is perfect
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secrecy and the other is computational secrecy. In a
perfect secret sharing scheme [19] attackers have un-
limited computational resources and the security of
the scheme is not based on cryptographic assumptions;
while, in a computational secret sharing scheme [14],
attackers are modeled as polynomial-time algorithms
and the security of scheme depends on some compu-
tational assumptions. Unfortunately, perfect secret
sharing schemes suffer from severe lower bounds on
the shares length; namely the share of each partici-
pant must be, at least, as long as the length of the
secret. Obviously, this is inefficient when the secret is
a big privacy file, a large message transmitted on an
insecure channel or enormous data in distributed stor-
age. In order to make up for this deficiency, Krawczyk
[14] presented a computational secret sharing scheme.
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92 Computationally Secure Multiple Secret Sharing — S. Mashhadi

Multi-secret sharing scheme is a generalization of
secret sharing scheme and in the real world applica-
tions, multi-secret sharing schemes are very practical.
In a multi-secret sharing scheme, multiple secrets are
distributed among the participants during a secret
sharing process. Two categories of Multi-secret shar-
ing scheme according to the secret reconstruction is
proposed, the multi-stage and the general multi-secret
sharing scheme; and depending on any specific situ-
ation, each category may be preferable. In a general
multi-secret sharing scheme (GMSS), all of the secrets
are reconstructed simultaneously in one stage [6, 20];
while, in a multi-stage secret sharing scheme (MSSS),
the secrets have different levels of importance, and
any authorized subset of participants can recover only
one secret in every stage [5, 8, 9, 15]. In the literature,
there are two different types of MSSSs. In the first type
(MSSST1), the secret reconstruction can be executed
in any order, e.g. the schemes [8, 9]. In the second type
(MSSST2), the secret reconstruction must be executed
in a predefined order [5, 15] are examples of this type.

Most of the works on multi-secret sharing schemes
have focused on perfect secure multi-secret sharing
schemes. Perfect secure multi-secret sharing schemes,
similar to perfect secret sharing schemes, have very
long shares and this makes perfect secure multi-secret
sharing schemes impractical; namely the size of each
share should be at least equal to the sum of the size
of different secrets [18]. To overcome the drawback of
perfect multi-secret sharing schemes, several works
on computational secure multi-secret sharing schemes
is recently done; but unfortunately, the authors of
these schemes introduced new construction of com-
putational secure multi-secret sharing schemes with-
out providing formal proofs of the proposed schemes
[4, 7, 8, 10, 16, 17, 20]. Until, in 2013, Herranz et al.
[9] proposed the first computational multi-stage secret
sharing scheme in the standard model, which was ex-
tension of some previous works [8, 16] and belonged to
the MSSST1. They provided the formal definition of
security for this type in the standard model. Moreover,
they proved that if a chosen plaintext attack (CPA) se-
cure encryption scheme is used in construction of their
MSSST1, this scheme has indistinguishability against
chosen secret attacks (CSAs) in the standard model.

To the best of our knowledge, except Herranz
et al.’scheme, computational multi-secret sharing
schemes in the standard model have not been treated
in the literature. Our current work aims to fill this
gap. Our goal is to formally prove the computational
security of the other types of multi-secret sharing
schemes in the standard model. The main contribu-
tions of this paper is as follows. A brief review of
some preliminaries required throughout the paper
is described at first. Then, we provide the formal

definitions of indistinguishability against the CSAs
for the computational MSSST2 and computational
GMSS, respectively. After describing formally the
computational security of a MSSST2, we present an
efficient CSA-secure MSSST2 (it can be thought as a
generalization of some previous MSSSs [8] and [16])
and prove its security in the standard model. The
proposed scheme enjoys the same level of security as
Herranz et al.’s scheme. Furthermore, we propose
a practical CSA-secure GMSS which is inspired by
previous work in this area [14] and based on the se-
mantic security of the underlying encryption scheme,
we prove its security against chosen secret attacks in
the standard model. Finally, we give a performance
comparison of our schemes with the Herranz et al.’s
scheme. The most important part of this work is the
formal security analysis that we provide, for both
proposed multi-secret sharing schemes.

2 Formal Definitions of Secure
Private Key Encryption

In the following, we review the definitions of the M.Eav-
secure and CPA-secure private key encryption schemes
and the game-based security definition models [1–
3, 12, 13].

2.1 Private-key Encryption Scheme

A private-key encryption scheme is a tuple of Π =
(Gen,Enc,Dec) such that:

• The randomized key-generation algorithm Gen
takes as input a security parameter 1λ and out-
puts a random key k; k ← Gen(1λ).

• The randomized encryption algorithm Enc takes
as input a key k and a plaintext message m, and
outputs a random ciphertext c; c← Enc(k,m).

• The deterministic decryption algorithm Dec takes
as input a key k and a ciphertext c, and outputs
a message m, such that m := Dec(k, c).

For correctness, Dec(k,Enc(k,m)) = m must hold, for
any k,m.

2.2 The Multiple-message Eavesdropping
Indistinguishability Experiment

Security of a private-key encryption scheme Π =
(Gen,Enc,Dec) under eavesdropper attacks, is defined
by the following game between an adversary A1 and
a challenger.

Game G1
(1) The challenger chooses a random bit β ∈ {0, 1}

and runs Gen(1λ), to produce a secret key k.
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(2) A1 chooses tuples M0 = (m0
1, . . . ,m

0
t ) and

M1 = (m1
1, . . . ,m

1
t ) where |m0

i | = |m1
i | for all

i = 1, . . . , t, and qc = t is the number of chal-
lenges.

(3) The challenger runs ci ← Enc(k,mβ
i ) and sends

back (c1, . . . , ct) to A1.

(4) A1 outputs a bit β′.

(5) The output of the game is defined to be 1 if β =
β′ and 0 otherwise. We write PrivKM.Eav

A1
(λ) =

1 if the output is 1 and in this case we say that
A1 succeeded.

A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable multiple encryptions in the pres-
ence of an eavesdropper (or is M.Eav-secure) in the
computational scenario, if for any polynomial-time
qc-adversary A1 there exists a negligible function negl
such that

Pr[PrivKM.Eav
A1

(λ) = 1] ≤ 1

2
+ negl(λ).

2.3 The Chosen-plaintext Attacks
Indistinguishability Experiment

Security of a private-key encryption scheme Π =
(Gen,Enc,Dec) under chosen-plaintext attack (CPA),
in the multi-user setting, is defined by the following
game between an adversary A2 and a challenger.

Game G2
(1) The challenger chooses a random bit β ∈ {0, 1}.
(2) A2 chooses the number κ of keys in the game.

(3) The challenger runs κ times Gen(1λ), to pro-
duce κ secret keys k1, . . . , kκ.

(4) A2 can make, at any time, qe encryption queries
(i,m) of its choice, where i ∈ {1, . . . , κ}. As
the answer, A2 receives the ciphertext c ←
Enc(ki,m).

(5) A2 chooses tuples (ij ,m
0
j ,m

1
j ), and sends these

queries to challenger, where ij ∈ {1, . . . , κ}
and m0

j 6= m1
j have the same length, for all

j = 1, . . . , qc, and qc is the number of challenges.

(6) The challenger runs c∗j ← Enc(kij ,m
β
j ) and

sends back to A2 for j = 1, . . . , qc.

(7) A2 outputs a bit β′.

(8) The output of the game is defined to be 1 if β =
β′ and 0 otherwise. We write PrivKCPA

A2
(λ) = 1

if the output is 1 and in this case we say that
A2 succeeded.

A private-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions under a chosen-
plaintext attack (or is CPA-secure) in the computa-

tional scenario, if for any polynomial-time (κ, qe, qc)-
adversary A2 there exists a negligible function negl
such that

Pr[PrivKCPA
A2

(λ) = 1] ≤ 1

2
+ negl(λ).

3 Computational Multi-secret
Sharing Schemes

In this section, we define the formal models of differ-
ent categories of computational multi secret sharing
schemes.

3.1 Formal Model of Computational
MSSST2

In a MSSST2 the dealer wants to share l se-
crets s1, s2, . . . , sl, according to l access structures
Γ1, . . . ,Γl, respectively (such that Γi ⊆ Γi−1, for
i = 2, . . . , l). The secrets are reconstructed stage-by-
stage in special order s1, s2, . . . , sl. In the following,
we will propose the definition of a CSA-secure com-
putational MSSST2 and the game-based security
definition model.

3.1.1 Multi-stage Secret Sharing Schemes

A computational MSSST2 is a tuple of Ω1 =
(Stp,Dist,Rec) such that:

• The setup algorithm Stp takes as input a security
parameter 1λ, the set of participants P and the l
different level access structures Γ1, . . . ,Γl, such
that Γi ⊆ Γi−1, for i = 2, . . . , l and outputs
some public and common parameters pms for the
scheme; pms← Stp(1λ,P, {Γj}1≤j≤l).

• The distribution algorithm Dist takes as input
pms and the global secret s = (s1, . . . , sl) to be
shared, and generates the set of secret shares
{shi}Pi∈P and possibly some pubic output outpub;
({shi}Pi∈P , outpub)← Dist(pms, s).

• The reconstruction algorithm Rec takes as input
pms, outpub, an index j ∈ {1, . . . , l}, a possible
value s′j−1 for the (j−1)−th secret; and the shares
{shi}Pi∈A of the participants in some subset A ⊂
P and outputs a possible value s′j for the j−th
secret; s′j := Rec(pms, outpub, j, s

′
j−1, {shi}Pi∈A).

For correctness, we require that for any index j ∈
{1, . . . , l} and any subset A ∈ Γj , it holds sj =
Rec(pms, outpub, j, sj−1, {shi}Pi∈A).

3.1.2 Chosen Secret Attack
Indistinguishability Experiment

We now define a game for any multi-stage secret
sharing scheme Ω1 = (Stp,Dist,Rec), between an
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adversary A3 and a challenger.

Game G3
(1) The challenger chooses a random bit b ∈ {0, 1}.
(2) A3 publishes the set of participants P and

l access structures Γ1, . . . ,Γl ⊂ 2P s.t. Γi ⊆
Γi−1,∀2 ≤ i ≤ l.

(3) The challenger runs pms← Stp(1λ,P, {Γj}1≤j≤l)
and sends pms to A3.

(4) A3 broadcasts a subset B ⊂ P of corrupted
participants.

(5) A3 broadcasts two different global secrets s0 =
(s01, . . . , s

0
l ) 6= (s11, . . . , s

1
l ) = s1 with the follow-

ing restriction: s0j = s1j for all j s.t. B ∈ Γj .

(6) The challenger runs ({shi}Pi∈P , outpub) ←
Dist(pms, sb) and sends ({shi}Pi∈B , outpub) to
A3.

(7) A3 outputs a bit b′.

(8) The output of the game is defined to be 1 if b =
b′ and 0 otherwise. We write MSSSCSA

A3
(λ) = 1

if the output is 1 and in this case we say that
A3 succeeded.

A multi-stage secret sharing scheme Ω1 = (Stp,Dist,Rec),
has indistinguishability against chosen secret attacks
(or is CSA-secure) in the computational scenario, if
for any polynomial-time adversary A3 there exists a
negligible function negl such that

Pr[MSSSCSA
A3

(λ) = 1] ≤ 1

2
+ negl(λ).

3.2 Formal Model of Computational GMSS

In a GMSS the dealer wants to share l secrets among
n participants according to the access structure Γ,
such that any authorized set of participants can recon-
struct all of the secrets simultaneously in one stage.
In the following, we will provide the definition of a
CSA-secure computational GMSS and the game-based
security definition model.

3.2.1 General Multi-secret Sharing Schemes

A general multi-secret sharing scheme is a tuple of Ω2 =
(Stp,Dist,Rec) such that:

• The setup algorithm Stp takes as input a secu-
rity parameter 1λ, the set of participants P and
an access structure Γ and outputs some public
and common parameters pms for the scheme;
pms← Stp(1λ,P,Γ).

• The distribution algorithm Dist takes as input
pms and the global secret s = (s1, . . . , sl) to
be shared, and generates the set of shares

{shi}Pi∈P and possibly some pubic output outpub;
({shi}Pi∈P , outpub)← Dist(pms, s).

• The reconstruction algorithm Rec takes as in-
put pms, outpub, and the shares {shi}Pi∈A of
the participants in some subset A ⊂ P and
outputs a possible value s′ = (s′1, . . . , s

′
l); s
′ :=

Rec(pms, outpub, {shi}Pi∈A).

For correctness, we require that for any subset A ∈ Γ
and any s it holds s = Rec(pms, outpub, {shi}Pi∈A).

3.2.2 Chosen Secret Attack
Indistinguishability Experiment

We now define a game for any general multi secret
sharing scheme Ω2 = (Stp,Dist,Rec), between an ad-
versary A4 and a challenger.

Game G4
(1) The challenger chooses a random bit b ∈ {0, 1}.
(2) A4 publishes the set of participants P and ac-

cess structure Γ.

(3) The challenger runs pms ← Stp(1λ,P, t) and
sends pms to A4.

(4) A4 broadcasts a subset B ⊂ P of corrupted
participants such that B /∈ Γ.

(5) A4 broadcasts two different global secrets
s0 = (s01, . . . , s

0
l ) 6= (s11, . . . , s

1
l ) = s1.

(6) The challenger run ({shi}Pi∈P , outpub) ←
Dist(pms, sb) and sends ({shi}Pi∈B , outpub) to
A4.

(7) A4 outputs a bit b′.

(8) The output of the game is defined to be 1 if b =
b′ and 0 otherwise. We write GMSSCSA

A4
(λ) = 1

if the output is 1 and in this case we say that
A4 succeeded.

A general multi-secret sharing scheme Ω2 =
(Stp,Dist,Rec), has indistinguishability against chosen
secret attacks (or is CSA-secure) in the computational
scenario, if for any polynomial-time adversary A4

there exists a negligible function negl such that

Pr[GMSSCSA
A4

(λ) = 1] ≤ 1

2
+ negl(λ).

4 The Computational MSSST2
Scheme

In this section we propose a computational MSSST2,
Ω3 with provable security in the standard model. For
simplicity, we consider the case where all the access
structures are threshold ones.
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4.1 Setup: Stp(1λ,P, t1, . . . , tl)

Let P = {P1, P2, . . . , Pn} be a set of n participants. A
dealer D wants to share l secrets s1, . . . , sl among the
participants of P in such a way that any tj or more
participants can recover the secret sj , while no tj − 1
participants can obtain any information about the
secret sj and let 1 ≤ t1 ≤ t2 ≤ · · · ≤ tl ≤ n (because
Γi ⊆ Γi−1, for i = 2, . . . , l). D chooses a secure private-
key encryption scheme Π1 = (Gen,Enc,Dec) with key
space K, plaintext spaceM and ciphertext space C,
such thatM contains the space of the secrets to be
shared. Let q be a prime number, q > n such that
Zq ⊂M. Each participant Pi is assigned the value i.
The public parameters are pms = (q,Π1,P, t1, . . . , tl).

4.2 Distribution of the Shares: Dist(pms, s)

D performs the following steps to share the l secrets
(s1, . . . , sl) ∈ Zq among n participants:

(1) Run ki ← Gen(1λ) for i = 1, . . . , n.

(2) The secret share shi = ki is sent to participant
Pi via a secure channel.

(3) Select random polynomials fj(x) ∈ Zq[x] of de-
gree tj − 1 such that fj(0) = sj for j = 1, . . . , l.

(4) Compute the values ci1 = Enc(ki, f1(i)) and
cij = Enc(ki, fj(i + sj−1)), for 1 ≤ i ≤ n, j =
2, . . . , l.

(5) The public output of the protocol is outpub =
{cij}1≤i≤n,1≤j≤l.

4.3 Reconstruction of the Secrets:
Rec(pms, outpub, {shi}Pi∈A)

The secrets should be reconstructed in the following
order: s1, s2, . . . , sl. Now we show that how the par-
ticipants of an authorized subset A ⊆ P (i.e. |A| ≥ tj)
can recover the secret sj :

(1) If j = 1

• EachPi ∈ A computes f1(i) = Dec(shi, ci1).

• Use the pairs {(i, f1(i))}Pi∈A to interpo-
late the polynomial f1(x) and recover the
secret s1.

(2) If j ≥ 2

• Each Pi ∈ A computes fj(i + sj−1) =
Dec(shi, cij).

• Use the pairs
{

(i+sj−1, fj(i+sj−1))
}
Pi∈A

to interpolate the polynomial fj(x) and
recover the secret sj .

5 Security Analysis of the
Computational MSSST2 Scheme

In this section we are going to reduce the compu-
tational security of the described computational
MSSST2 scheme, Ω3 to the security of the underlying
private-key encryption scheme Π1 and prove that if
Π1 has indistinguishability against chosen plaintext
attacks, then Ω3 has indistinguishability against cho-
sen secret attacks. As far as we know, this is the first
security analysis for MSSST2 in the computational
setting. Although we describe and analyze the scheme
in the setting of different threshold access structures,
it can be easily extended to work with more general
access structures.
Theorem 1. For any adversary A3 against the
chosen secret attacks security of MSSST2, Ω3 that
chooses t∗ corrupts participants in a set P of n partic-
ipants and chooses global secrets s0 = (s01, . . . , s

0
l ) 6=

(s11, . . . , s
1
l ) = s1, there exists a (κ, qe, qc)−adversary

A2 against the chosen plaintext attacks security of
private key encryption scheme Π1 with parameters
κ = n− t∗ and qe + qc = l(n− t∗) such that

Pr[MSSSCSA
A3

(λ) = 1] = Pr[PrivKCPA
A2

(λ) = 1]

Proof. The proof is by reduction. Let A3 be an ad-
versary against the computational security of the de-
scribed threshold MSSST2 scheme Ω3. We are going
to construct an adversary A2 against the CPA secu-
rity of private-key encryption scheme Π1, which will
use A3 as a sub-routine as follow:

(1) The challenger of the game G2 starts this game
by choosing a random bit β ∈ {0, 1}.
• A3 starts the game G3 by choosing the

set of participants P and threshold values
t1, . . . , tl s.t. 1 ≤ t1 ≤ t2 ≤ · · · ≤ tl ≤ n.

• A2 acts as the challenger of the security
game G3 and has to simulate running of
the pms ← Stp(1λ,P, t1, . . . , tl). To do
this, A2 chooses a prime number q > n,
such that Zq ⊂ M, and sends pms =
(q,Π,P, t1, . . . , tl) to A3.

• A3 broadcasts a subset B ⊂ P of cor-
rupted participants such that |B| = t∗.
Without loss of generality, we assume that
B = {P1, . . . , Pt∗}.
• A3 broadcasts two different global secrets
s0 6= s1 with the following restriction:
s0j = s1j for j s.t. t∗ ≥ tj . Let J∗ = {j ∈
{1, . . . , l} s.t. s0j = s1j}. Note that if t∗ ≥
tj , then j ∈ J∗.
• A2 runs ki ← Gen(1λ) for Pi ∈ B

(2) A2 defines the number κ = n− t∗ of keys in the
game G2.
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(3) The challenger of game G2, runs κ times
Gen(1λ), to produce κ secret keys kt∗+1, . . . , kn
for the non-corrupted participants Pi /∈ B.
• For each j ∈ J∗, A2 chooses random poly-

nomials fj(x) ∈ Zq[x] of degree tj − 1 s.t.
fj(0) = s0j = s1j .

• For each Pi ∈ B and each j ∈ J∗, A2 com-
putes the value cij in two different ways:
If j = 1, then ci1 = Enc

(
ki, f1(i)

)
, and if

j > 1, then cij = Enc
(
ki, fj(i+ sj−1)

)
.

(4) For each Pi /∈ B and each j ∈ J∗, A2 sends
the following encryption query: If j = 1, then(
i, f1(i)

)
, and if j > 1, then

(
i, fj(i+ sj−1)

)
to

its encryption oracle. This means that A2 has
made qe = |J∗|(n− t∗) encryption queries.

(5) For each Pi /∈ B and each j ∈ J∗, A2 re-
ceives the following value cij : If j = 1, then
ci1 = Enc

(
ki, f1(i)

)
, and if j > 1, then cij =

Enc
(
ki, fj(i+ sj−1)

)
.

• For each j /∈ J∗, A2 chooses random pairs
of polynomials f0j (x), f1j (x) ∈ Zq[x] of de-
gree tj − 1 in two different ways: If j = 1,
then f01 (0) = s01, f

1
1 (0) = s11, and f01 (i) =

f11 (i) for each Pi ∈ B, and if j > 1, then
f0j (0) = s0j , f

1
j (0) = s1j , and f0j (i+ sj−1) =

f1j (i+ sj−1) for each Pi ∈ B.
• For each Pi ∈ B and each j /∈ J∗, A2 com-

putes the value cij in two different ways:
If j = 1, then ci1 = Enc

(
ki, f

0
1 (i)

)
, an if

j > 1, then cij = Enc
(
ki, f

0
j (i+ sj−1)

)
.

(6) For each Pi /∈ B and each j /∈ J∗, A2

sends the following challenger query: If j =
1, then

(
i, f01 (i), f11 (i)

)
, and if j > 1, then(

i, f0j (i + sj−1), f1j (i + sj−1)
)

to its challenger
(game G2). So, the number of challenge queries
made by A2 is qc = (l − |J∗|)(n− t∗).

(7) For j /∈ J∗, Pi /∈ B the challenger of the game
G2, computes cij in two different ways: If j = 1,

then runs ci1 ← Enc
(
ki, f

β
1 (i)

)
, and if j > 1,

then cij ← Enc
(
ki, f

β
j (i + sj−1)

)
. Challenger

sends back cij to A2.

• A2 publishes the public output outpub =
{cij}1≤i≤n,1≤j≤l and sends the secret
shares {shi}Pi∈B of the corrupted par-
ticipants, defined as shi = ki. In this
way, A2 is perfectly simulating an ex-
ecution of the distribution protocol
({shi}Pi∈P , outpub)← Dist(pms, sb), where
b = β and sb = (sb1, . . . , s

b
l ).

• A3 outputs a bit b′ ∈ {0, 1}.
(8) A2 outputs the same bit β′ = b′.

Thus, we have

Pr[PrivKCPA
A2

(λ) = 1] = Pr[β′ = β]

= Pr[b′ = b]

= Pr[MSSSCSA
A3

(λ) = 1].

The second equality above is due to β′ = b′ and β =
b. This completes the proof.

5.1 Multi-stage Feature

Obviously, our scheme is based on the Lagrange in-
terpolation polynomial. At least tj participants must
provide their shares and reconstruct the secret sj in
j−th stage. If they do not have the previous secret
sj−1 first, they cannot obtain the secret sj . For this
reason, they must reconstruct the secrets in the spe-
cial order: s1, s2, . . . , sl.

6 The Computational GMSS Scheme

In this section we provide a computational GMSS, Ω4

and show that it has provable security in the standard
model. To the best of our knowledge, this is the first
security analysis for GMSS in the computational set-
ting. For simplicity, we consider the case where all the
access structures are threshold ones. Ω4 enjoys the
same level of security of Ω3 when an M.Eav-secure
encryption is used in its construction. We now give
the details.

6.1 Setup: Stp(1λ,P, t)

Let P = {P1, P2, . . . , Pn} be a set of n participants.
A dealer D wants to share l secrets among the partici-
pants of P in such a way that any t or more partici-
pants can recover the secrets, while no t− 1 partici-
pants can obtain any information about the secrets. D
chooses a secure private-key encryption scheme Π2 =
(Gen,Enc,Dec) with key space K, plaintext spaceM
and ciphertext space C, such that M contains the
space of the secrets to be shared. Let q be a prime
number and q > n such that K ⊂ Zq. Each partici-
pant Pi is assigned the value i. The public parameters
are pms = (q,Π2,P, t).

6.2 Distribution of the Shares: Dist(pms, s)

D performs the following steps to share the l secrets
(s1, . . . , sl) ∈Ml among n participants:

(1) Run k ← Gen(1λ).

(2) Compute cj ← Enc(k, sj), for j = 1, . . . , l.

(3) Select a random polynomial f(x) ∈ Zq[x] of
degree t− 1 such that f(0) = k.

(4) Compute the values ki = f(i), for 1 ≤ i ≤ n.
(5) The secret share shi = ki is sent to player Pi via

a secure channel, whereas the public output of
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the protocol is outpub = {c1, . . . , cl}.

6.3 Reconstruction of the Secrets:
Rec(pms, outpub, {shi}Pi∈A)

Now we show that how the participants of an autho-
rized subset A ⊆ P (i.e. |A| ≥ t) can recover the
secrets simultaneously in one stage:

(1) Use the pairs {(i, shi)}Pi∈A to interpolate the
polynomial f(x) and recover the value k.

(2) Take the values {ci}1≤i≤l from outpub and com-
pute the secrets si = Dec(k, ci) for 1 ≤ i ≤ l.

7 Security Analysis of the
Computational GMSS Scheme

In this section we are going to reduce the computa-
tional security of the described threshold scheme Ω4 to
the security of the underlying private-key encryption
scheme Π2 and prove that if Π2 has indistinguishable
multiple encryptions in the presence of an eavesdrop-
per, then Ω4 has indistinguishability against chosen
secret attacks. Although we describe and analyze the
scheme for the case of threshold access structure, it can
be easily extended to more general access structure.
Theorem 2. For any adversary A4 against the
described threshold computational GMSS, Ω4, that
chooses corrupts participants in a set P and chooses
global secrets s0 = (s01, . . . , s

0
l ) 6= (s11, . . . , s

1
l ) = s1,

there exists a qc−adversary A1 against the eavesdrop-
per attacks security of private-key encryption scheme
Π2, where qc = l and

Pr[GMSSCSA
A4

(λ) = 1] = Pr[PrivKM.Eav
A1

(λ) = 1]

Proof. Again, the proof is by reduction. Using a simi-
lar way we can show that ifA4 is an adversary against
the computational security of the Ω4 then it is possi-
ble to construct an adversary A1 against the multiple
eavesdropper attacks security of private-key encryp-
tion scheme Π2 which uses A4 as a sub-routine.

(1) The challenger of the game G1, chooses a ran-
dom bit β ∈ {0, 1} and runs Gen(1λ), to pro-
duce a secret key k.

• A4 starts the game G4 by choosing the set
of participants P and threshold value t.

• A1 acts as the challenger of the security
game G2 and has to simulate running of
the pms ← Stp(1λ,P, t). To do this, A1

chooses a prime number q > n such that
the key space K of the target private-key
encryption scheme Π2 satisfies K ⊂ Zq,
and sends pms = (q,Π2,P, t). to A4.

• A4 broadcasts a subset B ⊂ P of cor-
rupted participants such that |B| < t.

• A4 broadcasts two different global secrets
s0 6= s1 with the following restriction:
|s0j | = |s1j | for j = 1, . . . , l.

• For each Pi ∈ B, A1 chooses at random
shi = ki ∈ Zq. The values {ki}Pi∈B are
perfectly possible shares of the unknown
secret key k.

(2) A1 sends tuples s0 = (s01, . . . , s
0
l ) and s1 =

(s11, . . . , s
l
1) to its challenger (game G1).

(3) The challenger runs ci ← Enc(k, sβi ) and sends
back (c1, . . . , cl) to A1.

• A1 publishes the public output outpub =
{c1, . . . , cl} and sends {shi}Pi∈B to A4.
In this way, A1 is perfectly simulating
an execution of the distribution protocol
({shi}Pi∈P , outpub)← Dist(pms, sb), where
b = β and sb = (sb1, . . . , s

b
l ).

• A4 outputs a bit b′ ∈ {0, 1}.
(4) A1 outputs the same bit β′ = b′.

Thus, we have

Pr[PrivKM.Eav
A1

(λ) = 1] = Pr[β′ = β]

= Pr[b′ = b]

= Pr[GMSSCSA
A4

(λ) = 1].

The second equality above is due to β′ = b′ and β =
b. This completes the proof.

7.1 General Feature

Since the secrets can only be recovered by si =
Dec(k, ci) for 1 ≤ i ≤ l, at least t participants can
obtain the private key k and reconstruct all of the
secrets simultaneously.

8 Comparative Results

We have compared the proposed multi-secret sharing
schemes, Ω3,Ω4 with Herranz et al.’s scheme [9] in Ta-
ble 1. It should be noted that Ω3 and Herranz et al.’s
schemes belong to multi-stage secret sharing schemes,
while Ω4 is a GMSS. Moreover, the secrets should
be reconstructed according to a predefined order in
Ω3, while the secret reconstruction of Herranz et al.’s
scheme can be executed in any order. We do not con-
sider other multi-secret sharing schemes in Table 1,
because they lack a formal security analysis. Also,
in Table 2 we compare the proposed schemes with
MSSST2 and GMSSs proposed in [5, 7, 10, 15, 17, 20].
According to the specific example with l = 32, n =
210 = 1024, q = 211 = 2048 and results in [9], we
obtain the length of shi’s in Table 2.
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Table 1. Basic comparison between the Herranz et al. and our schemes

Property Herranz et al. [9] Ω3 Ω4

Space of secret s Ml Ml Ml

Length of outpub nl|C| nl|C| l|C|
Length of shi |K| |K| |K|
Security level of private-key encryption Π CPA CPA M.Eav

Security level of MSS IND-CSA IND-CSA IND-CSA

Category of MSS MSSST1 MSSST2 GMSS

Security model SM SM SM

Recover multi-secrets parallelly No No Yes

Participants can recover only one secret in
every stage

Yes Yes No

The secret reconstruction must be executed in
a predefined order

No Yes No

Size of each share is shorter than size of secret Yes Yes Yes

Has indistinguishability against chosen secret
attacks

Yes Yes Yes

Table 2. Basic comparison between the MSSST2 & GMSS

Property Chang [5] Li [15] Ω3 Yang [20] Hu [10]
Hadian

[7]
Mashhadi

[17]
Ω4

Length of shi in 2048-bit finite fields 2048 2048 149 2048 680 2048 680 149

Number of public values ln l(n− t) ln n + l 2n + l 2n + l 2n + l l

Category of MSS MSSST2 MSSST2 MSSST2 GMSS GMSS GMSS GMSS GMSS

Security model - - SM - - - - SM

Recover multi-secrets parallelly No No No Yes Yes Yes Yes Yes

Participants can recover only one secret in
every stage

Yes Yes Yes No No No No No

The secret reconstruction must be executed in
a predefined order

Yes Yes Yes No No No No No

Size of each share is shorter than size of secret Yes Yes Yes Yes Yes Yes Yes Yes

8.1 General Access Structures

We, similar to Herranz, have described and analyzed
the two new schemes in the setting of threshold access
structures. These schemes can be easily extended to
work with more general access structures. We just
have to replace the use of Shamir’s threshold secret
sharing scheme with the use of some other secret
sharing scheme which supports more general access
structures, such as monotone span programs [11].

8.2 Applications

MSSST1s such as Herranz et al.’s scheme are very
useful for situations where different running of a
secret task (like signature or decryption) may have
different levels of importance or security [9]. Beside,
in the real world applications, MSSST2s such as Ω3

are very practical. For example, there may be a secu-
rity system of bank’s confidential database where one
must pass through l checkpoints before the database
can be accessed. To distribute the power of a single
authority and the security policy, the checkpoints

should be opened and passed in sequence by at least t
participants together. If the checkpoints (secrets) do
not follow the proper order, it will harm the security
of the system [5].

Moreover, GMSSs such as Ω4 are useful in several
other kinds of applications [20]: Sometime it is re-
quired that several secrets be protected with the same
amount of data usually needed to protect one secret,
or sometimes people need to partition one large secret
into l pieces with each piece protected by a smaller
amount of data than is needed to protect the entire
secret.
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