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The spread of rumors, which are known as unverified statements of uncertain
origin, may threaten the society and its controlling, is important for national
security councils of countries. If it would be possible to identify factors affecting
spreading a rumor (such as agents’ desires, trust network, etc.) then, this could
be used to slow down or stop its spreading. Therefore, a computational model
that includes rumor features, and the way rumor is spread among society’s

members, based on their desires, is needed. Our research is focused on the

relation between the homogeneity of the society and rumor convergence in it.

Our result shows that the homogeneity of the society is a necessary condition for

convergence of the spread rumor.

© 2013 ISC. All rights reserved.

1 Introduction

he main characteristic of a rumor is its capacity

to spread uncontrollably, with an incredible ra-
pidity, so that in a very short period of time it can
produce catastrophic damage [1]. Even if transmitted
orally, its influence can be exacerbated by new means
of media transmitting and the increasingly need for
information.

During World War II, the Americans, under the
Office of Strategic Services (OSS), began developing
their own rumor-weapon technologies with the help
of the scientist Robert Knapp, who also wrote about
rumors in an academic context [2]. Knapp’s work
was adopted by the OSS in 1943 to create a sort
of manual for rumor engineers during the war. This
document was de-classified in 2004. The manual says
that, rumors are made memorable by being simple,
making concrete references and using stereotypical
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phrases. In this case, the suggested model for rumor
tries to conclude simple logical concepts to keep its
simplicity and phenomenon.

Controlling rumors in a country is a soft power [3],
which leads to success in world politics, economics and
etc. In this way, spread rumor is completely related to
security of nations. For example, according to CIA de-
classified documents about Iran’s 1953 coup, CIA uses
spreading propaganda against Iran’s current prime
minister to undermining his public standing: This
appears to be an example of CIA propaganda aimed
at undermining the Prime Minister’s public standing,
presumably prepared during Summer 1953. It certainly
fits the pattern of what Donald Wilber and others after
him, have described about the nature of the CIA’s
efforts to plant damaging innuendo in local Iranian
media. In this case, the authors extol the virtues of
the Iranian character, particularly as admired by the
outside world, then decry the descent into “hateful”,
“rough” and “rude” behavior Iranians have bequn to
exhibit “ever since the alliance between the dictator
and the Tudeh Party.” [4].

Since, different starting point in the network leads
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to different spreading behavior for a rumor, it is im-
portant to realize where the starting point for rumor
dissemination in the society is [5], and how it has
been observed. The structure of society and its ho-
mogeneity are two important factors on how rumor
statements mutate and how many people can hear and
change the propositions of the rumor. This might lead
to an equilibrium point [6]. If spread rumor reaches to
an equilibrium point, then it clarifies that desires of
corresponding agents in the society do not have any
propositions in the converged rumor. Therefore, rumor
spreading in a society can reveal belief indicators of
the society. Most mathematical studies of rumor prop-
agation include both theoretical and applied aspects:
Graph theory, Dynamic systems and, to a smaller ex-
tent, stochastic processes that have played prominent
roles in many models of rumor and information prop-
agation [7—10]. Daley and Kendal proposed a general
model of rumor spreading [11, 12]. The Daley-Kendal
model and its variants have been used repetitively in
the past for quantitative studies of rumor spreading
[13-15].

Recently, the mathematical models and correspond-
ing simulations on rumor spreading mainly investi-
gated the topology and dynamic of networks, without
underlying the logical and psychological aspects of
rumor dissemination phenomenon among network’s
agents [7, 16, 17]. An important shortcoming of the
mentioned models is that they neither investigate ru-
mors’ change while spreading, nor take advantage of
computational model for describing social interactions
and rumor spreading process (see related works in
Section 5). Therefore, a new model is required, which
helps better analysis of rumor changes through agents’
interactions.

We do not claim that our modeling is better than
other counterpart computational models, indeed.
Works which consider Markov Decision Process
method regard rumor spreading as a macro level
of a society, whereas in our work, we study rumor
spreading in a micro level regarding agents and the
connection network among them. Most of the coun-
terpart models for rumor spreading are less focused
on the phenomenon of rumor computationally. This
paper proposes consonant mathematical models for
both rumor and the social network, which rumors are
spreading through; where both rumors and beliefs
of agents playing role in rumor dissemination have
similar structures. This structure lets researchers
to investigate all individuals of the model as vec-
tors containing -1, 0 and 1s. In some of outstanding
counterpart models (such as [6, 18]) meeting among
agents is modeled based on probable events, while
transferring information between them and the entire
process can be modeled mathematically as MDP
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where the equilibrium point can be calculated as
obtained eigenvalues of the Transition Matrix.

There are three Simulation Modeling methods for
approximating real life behaviors: Discrete Events,
System Dynamics and Agent-based Modeling [19, 20].
We consider Markov Decision Process as a suitable
method to study rumor spreading, which is a System
Dynamics approach. Our purpose in this paper is to
providing an agent-based model for rumors and their
spreading analysis. It indicates the relationship be-
tween the homogeneity of the network and converg-
ing of rumor in stable colonies. The research result
demonstrates that convergence of spread rumor is in-
dependent from spreading process, and network ho-
mogeneity is a necessary condition for convergence of
the spread rumor.

Simulation of rumor spreading is also vitally im-
portant for analyzing and extracting principles from
observations. Through simulation we are given the
opportunity to evaluate the accuracy of pre- assumed
principles or obtain initial material for proving related
theorem, whether the homogeneity of the society is a
necessary condition for the convergence of the spread
rumor. Beside simulating our approach, we mathe-
matically prove Theorem 1 (see Section 4.3) which
shows the relation between homogeneity and rumor
convergence.

In the rest of this paper, in Section 2, a compu-
tational model for rumor, society and procedure of
rumor propagation is described in detail. Section 3 in-
vestigates applied algorithms for simulation of rumor
spreading. Section 4 analyzes the model and investi-
gates related attributes of a rumor and conditions of
rumor convergence. The paper is concluded by the
related works and further work, in Sections 5 and 6,
respectively.

2 Computational Model

Rumor propagation happens as follows: First an actual
event happens in the environment, and some agents
observe it. The observers based on their desire, change
the story of the event and send a rumor to their
neighbors in the network. After that, each agent, who
receives versions of the rumor, produces a new version,
based on what he received and also its desire.

To describe the environment, we consider a finite
set P = {p1,p2, ... ,pn} of atomic propositions. A
literal is an atomic proposition or the negation of an
atomic proposition. We define a conjunctive literal
form (CLF) proposition over P to be a conjunction
of literals, where for all atomic propositions p; € P,
either p; or —p; appears in it, but not both of them.
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Therefore, any CLF proposition ¢ over P, is a string
b1by ... by in {0, 1}* with length n, where b; = 1 if and
only if p; appears in ¢, and b; = 0 if and only if —p;
appears in .

For example, for P = {plap27p3}7 “p1Ap2 ATp3 isa
CLF proposition, and we represent it by the string 010.

We assume that, an actual event in the environment
or its rumor, is a CLF proposition over P.

A mathematical model for rumor propagation, on

a set of atomic propositions P = {p1, pa, ... ,pn}, is a
5-tuple

R = (Ag, Ob, rumorp,d,T) (1)
where:

e Ag is a finite set of agents

e Ob ; Ag refers to initial observers of the actual
event

e rumorp is the set of all CLF formulas over P

e § is a priority function that assigns a real number
to each proposition, that is, 6 : P — [0, 1]

e 7 is a trust function, that is, 7 : Ag x Ag — [0,1]

2.1 Rumor Model

When an agent witnesses an event, the agent creates
a rumor based on its observation of the facts that
constitute the event. We refer to the set of agents wit-
nessing the same event as observers, by Ob, that are
assumed as input channels of rumor spreading system.
The rumor is then diffused inside the network. Assum-
ing P, as the set of atomic formulas for describing the
environment, an actual event would be a CLF formula
over P. Furthermore, spread rumors of the spreading
system are CLF formulas.

2.2 Agent Model

It is observed multiple time that agents, who play role
in receiving and spreading a story, change its details
based on their own desires [21]. In our model, a 4-tuple
represents each agent ag € Ag:

aga = <D7 BOI’? 57 U> (2)

where D refers to the desire of the agent, and in-
cludes two subsets of P, positive subset '} and nega-
tive subset I'; so D = (I't,T'7). Interest of the agent
determines whether a proposition in P members in
'Y or ™ and Tt NT~ = @. Any proposition out
of these two subsets is supposed to be inconsiderable
for the agent. We map each agent ag € Ag to a vec-
tor made of 1, —1 and Os, which are referred to be-
ing in ", T~ or not being desired, respectively. For
example for P = {p1, p2, 3, 4,05}, agents ago, ag
with desires Dy = (I'¢,Ty), D1 = (I'],T7), respec-
tively, where Tl = {p1,ps}, Ty = {p2,p3}, I =
{p1,p3,p4},T7 = {p2}, the corresponding vectors are

ago = (1,-1,-1,0,1),ag1 = (1,—1,1,1,0). We de-
fine 7 as a membership function that is 7 : Ag x P —
{-1,0,1} and M as considered matrix for 7. So, con-
sidering matrix for the above example is:

:{1—1—101]
[171 1 10J

Each agent has a set indicated by Boz, C rumorp,
as rumor box, to store all received versions of an event.
The agent combines the received rumors according its
desire and then generates a new version to propagate
(For more details see Section 2.4).

Accepting procedure determines agents’ decision of
whether to accept or not the resultant of received
versions of a rumor. In order to insert mentioned
attribute into the model, the function 3, : Rumor —
{Yes, No} is defined. The motivation behind defining
this function is presented in Section 2.4.

Let’s assume that in the real world, every individual
lies with the probability of 1 — v, where v, € [0, 1]
is the veracity value of agent ag,. Any agent lies
(change the value of propositions) to augment the
number of propositions that fits its desire. In this
model, mentioned value is also used to describe the
probability of mutating a rumor before propagating.

2.3 Network Model

By rapid growth of social networks, and considering
that the major part of the interactions occur among
unknown individuals; trust plays an undeniable role
in forming the relationship among agents and informa-
tion propagation through them. The notion of trust
has been used in literature in most researches such
as [22-24]. So, we consider this notion is essential in
spread rumors. In our modeling, the spreading net-
work is modeled as a complete weighted directed graph
G = (V, E,7) where each vertex in V represents an
agent, and each edge in F represents a connection be-
tween a pair of agents. Each edge has a weight value,
which refers to trust of the tail agent to the head agent
while a rumor get transmitted between them (from
head agent as spreader to tail agent as receiver); the
function 7 : E — [0, 1] returns this value.

2.3.1 Assumptions

In order to simplify our model we state an assumption
referring to the network model as follow:

(1) Each agent trusts itself completely:
Va, 7(aga,ag9s) = 1 (3)
(2) For a triple of agents (ag,, agp, agr € Ag):
7(aga, agy) = 7(aga, age)7(age, agy)  (4)

1S¢0ured)
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This assumption guarantees that the trust
value raised from direct connection is bigger
than relative trust, which is obtained from
non-directed connections. If ag, trusts ag. with
value 7(ag,, ag.) and ag. trusts ag, with value
7(age, agy), then the trust of ag, to agy is at
least T(agq, ag:)7(age., agy).

Throughout the rest of this paper we assume that
mentioned assumptions are held.

2.4 Rumor dissemination Model

In a social system, people constitute a network of
connections so that, each connection represents how
much a couple of agents trust each other mutually.
Considering the spreading network G = (V, E, 7) in
this model, each node as a candidate of an agent
connects to its neighbor agents. At the beginning, some
agents are chosen as observers. They observe an actual
event and make initial rumors, then spread it through
the network. In every generation, an agent is chosen at
random from the agent population for taking chance
of generating and spreading its generated rumor. A
spreader agent calls hear function of each neighbor
to spread the generated rumor. Each hearer agent ag
adds received rumor to its rumor box, Box:

) T’f} (5)

where rumor r; is represented as a binary string:

ri = bibh..bl, bi € {0,1}. (6)

Box = {ry,ra, ...

An agent might receive many rumors from different
neighbors; the trust value of each connection deter-
mines the effectiveness amount of the corresponding
received rumor in the merge procedure. When it is
agent agaéAZs turn, first, he starts merging rumors
in the Box,. As mentioned, a rumor is a finite string
b1by...b, in {0,1}*. Merging procedure gives a new
string as the majority of preceding strings of received
rumors in Boz,. In order to obtain the merge pro-
cedure’s output string r°® = b9b3...6%, the following
equation is used to calculate the binary value of ;"
proposition in the merged rumor:

: k
b _ Ll > rcBox, T(Tk-spreader,ry.reciever) x b;
72

]

> v cBoa, T(Tk-spreader, ry.reciever)
(7)
The above formula, gives weighted average of bits,
which are referred to the binary values of proposi-
tions p; in the received rumors, which are stored in
the rumor box; so that contribution of each bit b; is
dependent to the trust value between spreader and
receiver of the corresponding rumor. Then it checks
if the average is bigger than 0.5, returns 1, otherwise
it returns zero. In the rest we define the concept of
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accepted propositions to formalize conflicts between a
spread rumor and desire of an agent:

Definition 1. A proposition p; € P in a rumor r =
b1bs...b, is accepted for agent ag, € Ag, if the propo-
sition is in the positive subset of the agent’s desire
and its value is true or, if it is in the negative subset of
the agent’s desire and its value is false. In other words
when one of the following conditions become satisfied:

(1) bl = lvpz € Fg_
(2) bj=0,p; e,

and it is unaccepted when one of the following con-
ditions become satisfied:

(1) bz = O,pi S F;L‘_
(2) bl = 1api € F;

otherwise the proposition is supposed to be an incon-
siderable proposition. We refer to the set of accepted
and unaccepted propositions by II, and A,, respec-
tively.

After applying the merge procedure to all the propo-
sitions included in the received versions in rumor box
of ag,, it is time to decide accepting or rejecting the
merged version (r2). In our simulations, the following
method is used for accepting function:

( :
Ba(r?) = iYes7 ‘lrllj‘l >0, «

No, otherwise

where |II!| denotes the number of accepted proposi-
tions (Definition 1) in rumor r for the agent ag,. In
the above equation, if ratio of accepted propositions
over all propositions goes upper than the accepting
threshold ©,, the agent decides strictly whether he
accepts the rumor or not. Otherwise, there is not any
probability to accept and its turn will be over without
spreading any rumor. Also, through out conveying the
rumor, changing some details is possible, therefore,
the hearer agent might alter some details, based on its
desire, which results mutation in the merged version
and generates the final promoted version.

Definition 2. The final promoted version of a rumor
by agent ag,, in generation t is referred as 7,¢. This
version first becomes accepted through the accepting
function and then desire of ag, is applied to it.

In the rest, if the agent wants to alter the value
of a proposition of its last promoted version (y'~1)
(Definition 2), then at least one high priority proposi-
tion must be selected from unaccepted propositions,
using Roulette wheel selection algorithm [25]. Where
the probability of choosing an unaccepted proposition
Pr € A, is
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6(Pk)
ZﬁjEAa 5(ﬁj)

The priority of a proposition is the result of its social
importance so that propositions with higher priority
preempt those with lower priority when choosing by
an agent. There are different ways for defining priori-
ties, which some of them have been suggested in this
paper: Eugster et al.[26]. After agent ag, selects target
proposition; changes it with the probability of 1 — v,
where v, denotes to its veracity value. Then the agent
spread its generated rumor to the neighbor agents.

P{choosing Py} = (9)

3 Computer Simulation

In this section, implemented methods for computer
simulation of rumor propagation are investigated. As
the target of computer simulation, it has to do with
the manipulations of symbols using a computer code;
more specifically, it uses algorithms and rules to de-
rive mathematical propositions from assumptions [27].
Therefore, written codes and used algorithms will be
discussed, which are proposed to help us approaching
the target of simulation.

As mentioned in Section 2.4, each agent has the
chance to spread last generated rumor on its turn.
By calling the RUN function (Algorithm 1), first, the
agent starts merging received versions in the rumor box
using the COBINE-RECEIVED-VERSIONS function
(Algorithm 6), second, by calling the CAN-ACCEPT
function (Algorithm 5), he checks whether the merged
version is acceptable or not and then if the last stage
is passed, he changes the rumor based on its desires by
calling the MUTATE function (Algorithm 3). Finally,
the agent spreads the verified version to the neighbors
by calling their HEAR functions (Algorithm 4) .

Algorithm 1 RUN ()

if CAN — ACCEPT() then
spreadRumor < SPREAD-GENERATED-RUMOR()
for all e € EdgesToFriends do
HEAR(e.targetAgent, spreadRumor,
e.trustCoefficient)

end for

CLEAR( RUMORBOX )

PUT( RUMORBOX , spreadRumor )
end if

Algorithm 2 SPREAD-GENERATED-RUMOR ()

MUTATE (acceptedRumor , desire)
return acceptedRumor

4 Model Analysis

It is expected that if there does not exist any conflict
among beliefs, a spread word of mouth through this

Algorithm 3 MUTATE( accepted Rumor, desire)

for all p € rumor.propositions do
if IS-POSITIVE-PROPOSITION( p, desire ) then
if p.value = FALSE then
ADD( REJECTED-SET,p )
end if
else if
then
if p.value = TRUE then
ADD( REJECTED-SET, p )
end if
end if
end for
selected Propsition < DO-SELECTION(REJECTED-SET)

IS-NEGATIVE-PROPOSITION( p, desire )

if RANDOM(0 , 1)< 1 — veracityCoef ficient then
UPDATE CODE( rumor, selectedPropsition,
= selectedPropsition.value )
end if

Algorithm 4 HEAR ( listener Agent, rumor, trust)

if listenerAgent .RUMORBOX.CNTAINS(rumor ) =
FALSE then

PUT(listener Agent RUMORBOX, rumor, trust)
end if

group could easily converge to consensus version. In
our research, we investigate whether homogeneity of
society is necessary or/and sufficient condition for the
convergence of spread rumor. Therefore in this section
we try to answer the following questions:

e If there does not exist conflicting in desires, de-
spite the presence of different versions at the be-
ginning, do they converge to one consensus ver-
sion after a finite number of generations? (Do all
agents accept a similar version of rumor?)

e In a rumor-society system, if different versions of
a rumor reaches an equilibrium point (converge),
does it ensure that the society was homogeneous?

As dissemination of rumors is not independent from
members of society (it is affected by desires of agents),
so convergence concept has to be clarified so that we
can clearly state status of agents in the equilibrium
point. In this regard, mathematical concept of stability
is defined. Also in order to mainstream analysis, we
define another prominent concept mathematically;
which is homogeneity.

4.1 Stability

If a system provides its parts with an optimum envi-
ronment, then they will tend to conserve it. In our ru-
mor spreading system, an agent reaches the optimum
point when no change in the details of the received
rumor is required. Individual stability extends to so-
cial stability by attributing individual stability for all

agents.
@
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Algorithm 5 CAN-ACCEPT ()

accepted Rumor < COMBINE-RECEIVED-VERSIONS( )
nrO f Accepted Propositions < 0
nrO f Rejected Propositions <— 0.01
for all p € accepted Rumor.propositions do
if IS-POSITIVE-PROPOSITION( p, desire) then
if p.value = TRUE then

nrO f Accepted Propositions <— nrO f Accepted Propositions + 1

else

nrO f RejectedPropositions <— nrO f Rejected Propositions + 1

end if

else if ISSNEGATIVE-PROPOSITION( p, desire ) then

if p.value = FALSE then

nrO f Accepted Propositions <— nrO f Accepted Propositions + 1

else

nrO f RejectedPropositions <— nrO f Rejected Propositions + 1

end if
end if
end for

accRatio < nrO f Accepted Propositions/(nrO f Accepted Propositions + nrO f Rejected Propositions)
if (accepted Rumor.attractivenessCoef ficient + accRatio) > acceptingThreshold then

return FALSE
else

return TRUE
end if

Algorithm 6 COMBINE-RECEIVED-RUMORS ( )

tempRumor < network.initialObservation
for all p € tempRumor.propositions do
denominator <— 0.01
enuminator < 0
for all r € RUMORBOX do
if r.walue = TRUE then
val <1
else
val < 0
end if
enuminator < enuminator + GET(RUMORBOX, r)
X val

denominator < denominator + GET(RUMORBOX, r)

end for
ef f Ratio < enuminator /denominator
if effRatio < 0.5 then
UPDATE CODE( r,p , FALSE )
else
UPDATE CODE( r,p , TRUE )
end if
end for
return tempRumor

4.1.1 Individual Instability

In the real world, each agent tends to change the con-
tent of the received versions of a rumor based on his
own desire. As mentioned in the previous sections,
each agent ag, changes merged version with the prob-
ability of 1 —wv,, the following equation for calculating
individual instability value of agent ag, in " genera-
tion is proposed:

Q= 1A3"(1 ~ va) (10)

where |A*!| denotes the number of unaccepted propo-
sitions in v,' for agent ag, (see Definition 2). The
above equation implies that a veridical agent would
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not apply its desire on the resultant of the received
versions. In the next section the average value of Q2 on
the colony will be used as momentum individual insta-
bility in each generation of rumor spreading process.

4.1.2 Social Instability

Social stability is obtained only if all agents become
stable; but predicting an agent’s stability is impossi-
ble without knowing the status of its neighbor agents.
Therefore, the definition of social instability is some-
how different from calculating the average of individ-
ual instabilities. In fact, social instability is a com-
pletely time-dependent attribute. We can hereby state
that a society is stable if and only if, it will not lose
its stability within the next generations, under any
circumstances. In the rest of this paper, social insta-
bility is investigated on sequence of obtained values
I (t) which denote the mean instability of colony C'
in t'* generation:

o) = 7 ¥ (1)

ag.€C

4.2 Homogeneity

In order to compare colonies with each other, without
knowing about their interactions with rumor spread-
ing, we need to define a new network attribute. This
attribute is independent from rumor spreading, but
its impact on rumor spreading must be determined.
In this paper, the term of homogeneity refers to the
degree to which the desires of agents in society to be
compatible. In other words, it is a measure for show-
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Table 1. Our example proposition set.

i 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21 22 23

4(p;) 0.8 0.1 0.7 0.3 0.4 0.4 0.6 0.6 0.3 0.2
ing the general lack of tendency to change value of
propositions in the spread rumor. The homogeneity
attribute for a colony arises from combining the fol-
lowing three measures:

(1) The closeness of agents’ desires.

(2) The corresponding trust value for each connec-
tion in the colony.

(3) The veracity value of agents.

We give a measure for closeness of agents’ desires
based on their identical distance:

Definition 3. The identical distance between

agents agq,agy € Ag, with corresponding vectors agq
and agp , respectively, is defined:

7|
M, o — M
d(aga,agy) = E:F = 5 Lli x d(px)? (12)
k=1

where 0 returns the global priority for each proposition
pr € P and M is the matrix of membership function
mentioned in the section 2.2.

Definition 4. We say two agents ag,,agy, € Ag con-
flict, whenever there exists a proposition py € P, so
that:

pr €TFNT, Vvpr €T, NI

The following equation is proposed to give a measure
for homogeneity of colony based on measure of its
heterogeneity:

hc = exp(— Z Z Hap)

agq,€C agr,eC

(13)

where H, ; is heterogeneity between agents ag, and
agy

Hap = d(aga,age)(age, ags)(1 —va)  (14)

Two things are particularly important in this equa-
tion. First, it underlines the idea that the homogene-
ity of a society depends not only on consistency be-
tween agents’ desires, but also on the veracity and the
trust-based connection between agents. Second, the
existence of honest agents (with v, = 1) in a society
increases the homogeneity of the society.

4.3 Mathematical Analysis

In order to analyze the model mathematically, we pro-
vide some examples. Each example illustrates how a
rumor spreads through its corresponding network and

0.3 0.6 0.2 0.8 0.5 0.5 0.1 09 1.0 0.4 0.5 1.0 0.2

which attributes mentioned in the model, effects ru-
mor spreading. Then a theorem on convergence of the
spread rumor is proved based on the presented compu-
tational model. It is worthwhile to mention that the
number of agents in simulations is not significant. The
main purpose of the given examples is to verify the up-
coming theorem. Each example investigates a specific
mode of rumor spreading to confirm completeness of
the considered theorem.

In all following examples, we consider Table 1 that
shows a proposition set P that includes 23 propositions
and the priority of each proposition is determined
subsequently in the second row.

We also consider r;,, = 11101001101110101001010
as the initial observation of the actual event.

Example 1. There are nine agents with common
veracity values (v; = 0.5,7 = 1,2,...9) and Ob =
{ago}. For each agent ag; € Ag, the desires are shown
in Table 2. In this example the trust function 7 returns

Table 2. Desires of agents in Example 1

Sets of desire Included propositions

rf 123 7 9 11 13 17

r; 46 8 14 16 20 21 23

1 for each pair and hg = 1.

This simulation is designed to investigate the model
with multiple, but completely similar agents, which
all trust each other. Obviously, the homogeneity value
for this society is 1. Considering Figure 1, the network
reaches to a stable mode after a number of generations
and the spread rumor converged.

Example 2. The same agents in the previous exam-
ple and the same Ob set, but the trust function 7
returns 0.5 for each pair of agents. In this example we
have he = 1.

The only different attribute of this simulation is the
trust function. But homogeneity value is not changed
apparently. Considering Figure Figure 2, like the pre-
vious simulation, the network reaches to a stable mode
after a number of generations.

Example 3. There are two agents with v; = 0.5, =
1,2 and Ob = {ag1 }. Considered desires and trust val-
ues are shown in the Table 4 and Table 5, respectively.

Also in this example we have h¢e = 1.

1S¢0ured)
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Figure 1. Mean social stability diagram in Example 1.
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Figure 3. Mean social stability diagram in Example 3.

Table 3. Desires of agents in Example 3

Sets of desire Included propositions

rf 1 2 3 10 11 13 17
ry 4 6 8 14 20 21 23
r 13 7 9 11 13 17
ry 4 5 8 14 16 20 22 23

Example 4. There are two agents with v; = 0.5,7 =
1,2 and Ob = {ag, }. Considered desires and trust val-
ues are shown in the Table 6 and Table 7, respectively.

1SeCure

Table 4. Trust value of connections in Example 3

Agent 1 2
1 1 0.6
2 0.6 1

In this example we have ho = 0.3734.

Examples 3 and 4 are designed to investigate the
model supposing two different agents, where in the Ex-
ample 3, these two agents make homogeneous network,
whereas in the Example 4, agents are inconsistent with
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Figure 4. Mean social stability diagram in Example 4.

Table 5. Desires of agents in Example 4

Sets of desire Included propositions

rf 2 5 10 11 13 17 18
Iy 4 6 8 19 20 23

g 1 3 7 9 12 13 15
ry 5 14 16 18 21 22

Table 6. Trust value of connections in Example 4

Agent 1 2
1 1 1
2 1 1

each other in their desires.Therefore, result accord-
ing to the obtained diagrams (Figure 3 and Figure 4)
we can conclude that, the homogeneity value effects
the mean stability of the network as the outcome of
simulation.

Example 5. There are nine agents with common
veracity values (v; = 0.5,¢ = 1,2,...9) and Ob =
{agy}. Considered desires and trust values are shown
in the Table 8 and Table 9, respectively.

Example 6. There are nine agents with common ve-
racity values (v; = 0.5, =1,2,...9) and Ob = {age}.
Considering desires are shown in the Table 10 where
the trust values are the same as previous example.

In this example we have hg = 1.4 x 1077

The obtained diagrams of simulations in Example
5 and Example 6, emphasizes on the result, which
is already gained from the comparison of Example 3
and Example 4, however there are more agents and
connections.
Example 7. There are nine agents with common
veracity values (v; = 0.5,4 = 1,2,..9) and Ob =
{agy}. Considered desires are shown in the Table 10
and the trust values are the same as previous example.

In this example we have ho = 1.

Table 7. Desires of agents in Example 5

Sets of desire Included propositions

rf 1 2 3 9 11 13 17
ry 6 14 16 21 23

r 4 12 22

ry 5 6 14 21

rs 1 3 4 9 13 17
ry 6 10 14 18 21

rf 1 2 3 4 9 12 13
ry 5 6 14 16 18 23
ry 1 2 3 4 12 13 17
ry 5 6 14 18 23

ry 4 9 12 13 17 22
Ty 6 14 16 19 21

rt 2 4 13 22

r; 5 6 16

ry 3 12 13 22

Iy 10 18 23

ry 1 2 4 9 12 22
ry 5 6 14 19 21

The attributes of the simulation in Example 7 are
almost similar to Example 6, but the absence of some
propositions in desires of a large part of agents, causes
appearing unexpected outcomes from the simulation
process that says the homogeneity is necessary, but in-
sufficient condition for stability of colony while spread-
ing a rumor.

Lemma 1. The identical distance between a pair of
agents is greater than zero if and only if, they conflict
with each other:

d(agi,ag;) >0 < 3py : (pr € Fjﬂf‘;\/pk € F;ﬂF;r)
(15)
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Figure 5. Mean social stability diagram in Example 5. The network reaches to a stable mode and the spread rumor is converged.
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Figure 6. Mean social stability diagram in Example 6.
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Figure 7. Mean social stability diagram in Example 7.

Table 8. Trust value of connections in Example 5

-1,M;,=1)
(i)Eka:pkeFj'ﬁFj_ Vpp el ﬁF;‘

Agent 1 2 3 4 5 6 7 8 9 . d(agi,ag;) > 0 < Ip, : py € I‘;-" NI, Vp, €
1 1 03 03 037 03 032 05 058 0.33 r; N r;r. ]
2 0.3 1 03 035 036 04 0.52 0.79 0.32
3 03 03 1 038 0.36 031 0.36 0.58 0.34 We want to investigate a situation, in which two
4 037 035 038 1 0537 032 039 063 034 agents ag;, ag; Conﬂlct in their desu“.es and ag; acts as
the sender of a version of a rumor which completely fits
5 0.3 036 036 037 1 036 032 0.53 035 to his desires and ag; plays the role of rumor receiver:
6 032 04 031 032 036 1 031 039 03 Lemma 2. If the number of unaccepted propositions
7 05 052 036 039 032 031 1 041 0.33 for ag; in generation f (that ag; spread its final pro-
3 058 0.79 0.58 063 053 039 041 1 057 moted version) is zero (|Aj | = 0) and there exist ag;
such that there is conflict between ag; and ag; on the
9 0.33 032 034 034 035 0.3 0.33 0.57 1 value Ofpk (866 defz'nition 4) andT(agi,agj) >0, then
if it comes to turn of ag; in generation t, t > f to
Proof. By Definition 3: [V spread ’y} ; the probability of change in the value of py,
d(agi,ag;) > 0 < Ipy LWJ >0 in the merged version of ag; in generation t is greater
S dpp : My = 1,M;, = —1) or (M, = than zero:
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(Jag; : pr € F;-"ﬁl“j_\/p;€ € F;ﬂf‘;’, 7(ag;,ag;) > 0)
= (P{b2 + b5 =1} > 0) (16)

Table 9. Desires of agents in Example 6

Sets of desire Included propositions
rt 1 2 3 7 9 11 13 17 . .

! Proof. Assuming |A;f\ =0 (f <tandr*7 is stored
My 4 6 8 14 16 20 21 23 in Box;), then we consider one of the following condi-
ri 4 12 18 22 tions for py:

Ty 56 7 14202 (1) if pg € I‘;r then szf = 1(i.e. the value of py in
ry 13 4 7 9 13 17 20 23 the generated rumor of ag; in generation f is
ry 6 8 10 12 14 18 21 true).

_ the generated rumor of ag; in generation f is
Ty 5 6 14 18 23

false).
rf 1 2 3 4 7 9 12 13 19 Therefore: if AT = AT+ by (7 £
erefore; 1 el "Nl vprel, NI, or
s 5 6 14 18 23 G ERE e g PR E R v (7)
calculating b7, the probability of changing the value
ri 4 9 12 13 17 22 Lok . :

6 of pi in r° in generation ¢ is greater than zero.

Ty 6 11 14 16 19 21 0
rt 2 4 13 19 21 22
- 5 6 11 16 18 Theorem 1. If spreading a rumor in colony C' leads to

1 reach a stable state after a number of generations (i.e.
T 306 12 13 = for somem > 0, for all generationst > m, Ic(t) =0),
Iy 7 10 18 23 then the colony C' is homogenous (i.e. he = 1). That
ry 1 2 4 9 12 18 22 is :

'y 5 6 8 11 14 19 21 (meNVt>m:Ic(t)=0)=hec =1
Proof. Let C be a colony that is reached to a stable
Table 10. Desires of agents in Example 7 state after m generations. Then, by (11) we have :
Sets of desire Included propositions Vit >m: Io (t) =0
rF 1 2 3 7 9 11 13 17 1
I 6 8 14 16 20 21 23 Ol =
rs 4 12 22
2 note that by (10), we have Qf > 0; hence:
ry 5 6 14 21 .
Iy 1 3 4 9 13 17 YVt > m,Vag; € C,Q; =0
*t
ry 6 8 10 14 18 21 =Vt >m,Vag; € C: [A7[(1 —v;) =0
rf 1 2 3 4 9 12 13 We want to prove that if heterogeneity between ag;
r; 5 6 14 15 18 23 and any nelghbc.>r. agent becomes greater th.an Zero,
" then the probability that agent ag; becomes instable
s L2 3 4 12 1317 in generation ¢t > m is greater than zero, and therefore
Iy 5 6 7 8 14 18 23 it can not remain in the stable state. So, we consider
s 4 9 12 13 17 22 one of the following cases for each ag;:
rs 6 14 16 19 21 case 1: (1 — v;) = 0. Therefore; using (14), for each
" ag; € C, we have: H; ; = 0.
Iz 2 4 13 22 case 2: Vt > m : |A'| = 0. Therefore; after genera-
r> 5 6 16 tion m, the probability that any change occurs in the
i 3 12 13 22 size of A;‘t (set of unaccpted propositions for ag; in
- 0 18 23 generation t) is zero. So the probability of change in
8 the value of any proposition py in 7! while going from
ry 1 2 4 9 12 18 22 generation ¢ to t + 1 is zero.
ry 5 6 14 19 21

Vpi s P{op T 4ot =1} = 0.

Assuming that heterogeneity between ag; and any
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neighbor agent becomes greater than zero, if there
exists ag;, H; ; > 0, then:

d(agi,ag;)T(ag;,ag;)(1 —v;) > 0.

we obtain : Jag, : d(ag; , agj) > 0, 7(ag;, ag;) > 0.
which implies that there is conflict among desires of
ag;,ag;. By Lemma 1 we have:

Jag;Ipe € P+ (pr €Ty NT; Vpp € T; NTS) (17)

Assuming that it is ag;4AZs turn in generation 7' >
m + 1 to spread its generated rumor, as mentioned in
section 2.4, changes of last generated rumor is probable
while merging and mutating procedure.

Pl b =1 = PO 0T = 1)
P{B(r°") = Yes} + P{mutation,, } (18)

By knowing 17 and using Lemma 2, we deduce that
P{bzit + bzit_l =1} > 0. Also we have:

g
P{B(r*") = Yes} = P{ ||PZ|| >0;} >0
and by (9)
- 3(Pr)
P{mutation =" x(1-v;)>0
{ pk} Z;ﬁjeAi 5(pj) ( )
then

P{o; " bt =1} > 0.
and now we deduce that :
Jag;Ipr € P: (pr, € T NIy Vpr el ﬁl"j)
= 3p PO 4B =11 >0 (19)

contradiction. Therefore H; ; = 0.
In both cases we obtained that Vag;, H; ; = 0, then

hC = exp(— Eagiec ZangC Hi,j) =1. D

5 Related Work

In this section, we briefly present some of the proposed
mathematical models for rumor and information prop-
agation. Most of these models have traditionally used
rumor as epidemic approach that oversimplifies the
phenomenon and demographic distribution of the peo-
ple make role in rumor dissemination.

Kostka et al. proposed a simple model in order to
examine the diffusion of competing rumors [5]. They
used concepts of game theory and location theory.
They modeled the selection of rumors’ starting nodes
as a strategic game.

Wang et al. designed a trust model for rumor spread-
ing [28]. They considered that, when people exchange
information, the trust in the received information is
related to the interpersonal closeness. They also used

18:0ured)

the Monte Carlo method to find the key source nodes
in rumor spreading by comparing the total number of
spread nodes and spreading time.

One of the most challenging models, which is stud-
ied in our primary research, was the model proposed
by Acemoglu et al. [18]. They provided a model to
investigate the tension between information aggrega-
tion and spread of misinformation. In this model, in-
dividuals meet pairwise and exchange information by
adopting the average of their pre-meeting beliefs and,
under some assumptions; convergence of beliefs to a
stochastic consensus is obtained. The main results of
this paper quantify the extent of misinformation by
providing bounds or exact results on the gap between
the consensus value and the benchmark value.

Nekovee et al. [29] introduced a general stochastic
model for the spread of rumors, and derive mean-field
equations that describe the dynamics of the model on
complex social networks. They used analytical and
numerical solutions of these equations to examine
the threshold behavior and dynamics of the model
on several models of such networks and showed that
in both homogeneous networks and random graphs
the model exhibits a critical threshold in the rumor-
spreading rate below, which a rumor cannot propagate
in the system. The obtained results show that scale-
free social networks are prone to the spreading of
rumors, just as they are to the spreading of infections.
They are relevant to the spreading dynamics of chain
emails, viral advertising and large-scale information
dissemination algorithms on the Internet.

Piqueira [6] studied the equilibrium of rumor prop-
agation. In the corresponding paper, in an analogy
with the SIR (Susceptible-Infected-Removed) epidemi-
ological model Kermack and McKendrick [30], the ISS
(Ignorant-Spreader-Stifler) rumor-spreading model is
studied, and using the concepts of Dynamical Systems
Theory, stability of equilibrium points is established,
according to propagation parameters and initial con-
ditions.

6 Concluding remarks and further
works

In this paper we studied rumor dissemination in soci-
eties that all agents can communicate to each other.
In our model, rumor spreading does not affect the de-
sires of agents (the set I'" and '™ remains unchanged
through rumor spreading) and it converges, then the
society needs to be homogenous. In other words, if a
society is not homogenous, it is impossible that spread
rumor converges.

We are going to improve our model for different
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goals in our further works. We may consider societies
that the underlying graph is not a complete one. In
this case, we need to cluster the society and find
subsections in which a rumor converges.

We restricted ourselves to conjunctive literal forms
(CLF) formulas to describe events and rumors. Con-
junctive normal forms (CNF) formulas are more ex-
pressive and as a further work, we may use CNF for-
mulas to formally model events and rumor.
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