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A B S T R A C T

In this paper, a new broadcast encryption scheme is presented based on

threshold secret sharing and secure multiparty computation. This scheme is

maintained to be dynamic in that a broadcaster can broadcast a message to

any of the dynamic groups of users in the system and it is also fair in the

sense that no cheater is able to gain an unfair advantage over other users.

Another important feature of our scheme is collusion resistance. Using secure

multiparty computation, a traitor needs k cooperators in order to create a

decryption machine. The broadcaster can choose the value of k as he decides to

make a trade-off between communication complexity and collusion resistance.

Comparison with other Broadcast Encryption schemes indicates enhanced

performance and complexity on the part of the proposed scheme (in terms of

message encryption and decryption, key storage requirements, and ciphertext

size) relative to similar schemes. In addition, the scheme is modeled using

applied pi calculus and its security is verified by means of an automated

verification tool, i.e., ProVerif.

c© 2013 ISC. All rights reserved.

1 Introduction

A broadcast encryption system [1, 2] enables a broad-
caster to encrypt a message for an arbitrary subset
of users S ⊆ 1, ..N who are listening on a broadcast
channel. Any user in S can decrypt the broadcast us-
ing his private information. Moreover, even if all users
outside of S collude, they obtain no information about
the contents of the broadcast. Such systems are said
to be collusion resistant.

Since inception, Broadcast Encryption has been a
hot research topic in academic world and has found
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its way in many sub-areas as well [1–3]. There are
many applications for Broadcast Encryption including
media broadcasting such as IPTV, pay TV, CD and
DVD [4], Wireless Sensor Networks [5, 6], Content
Protection [7, 8] to name a few.

There are two main types of Broadcast Encryption
(BE) systems, namely the Public key Broadcast En-
cryption [9–13], which makes use of public key oper-
ations to address security requirements, and Private
key Broadcast Encryption [2, 9, 14], which is also used
for the purpose of the present study. It has to benoted
here that the main advantage of a Private Key BE
scheme lies in its use of lightweight operations to per-
form encryption, which makes the scheme suitable for
special circumstances such as Sensor Networks and
Mobile Networks.
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2 Related Literature

2.1 Broadcast Encryption

Fiat and Naor in [2] has proposed a number of private-
key collusion resistant broadcast encryption schemes.
In these schemes, each user will store keys, each of
which is dedicated to a specific subset of users that
does not include the key owner. In order for a message
to be broadcast, it will be encrypted using the key
dedicated to the recipient subset.

Similarly, Du et al. [14] have introduced an ID-based
broadcast encryption scheme by which a center can
distribute keys over a network, so that each member of
a privileged subset of users can compute a specified key.
Then a conventional private-key cryptosystem, such as
AES, can be used to encrypt the subsequent broadcast
with the distributed key. The main disadvantage of this
process is that the center needs to setup and broadcast
session keys for each new subset. In addition, when a
new member is added to a recipient group, the center
needs to re-establish group session key and broadcast
the new key. Upon user revocation, this scenario has
to be repeated and new group session keys are to be re-
established and broadcast. Although this scheme has
proved to be dynamic, it does not appear as efficient,
since when a new user is added or removed, system
parameters need to be re-established.

Elsewhere in [10], Boneh and Waters also introduced
a novel concept called Augmented Broadcast Encryp-
tion which was shown to be sufficient for constructing
broadcast encryption, traitor-tracing, and trace-and-
revoke systems. The main problem with this scheme,
however, is that, in order to add a new user, the whole
system needs to be re-established. Thus the center
needs to re-calculate public and private parameters
of the system and user keys.

In the same vein, Delerable et al. [9] attempted to
define two new efficient constructions for public-key
broadcast encryption and a construction for private-
key broadcast encryption. Takeing advantage of bi-
linear maps, the first construction defines three sub
protocols: Join, Encryptand Decrypt. This construc-
tion supports one-time revocation, which means that
revoked users are not removed permanently from the
system. To provide this feature, the center needs to
broadcast messages to system users to update their
keys.

The second construction, however, enhances the
first one by providing O(1) cipher length and linear
decryption keys. Yet it lacks the dynamic features of
the first construction.

And the third construction enjoys O(1) decryption

key and a linear cipher text.

The problem with this latter one is that it is mainly
designed for cases with little number of revoked users.

In another study, Danfei has proposed an authenti-
cated multi-broadcaster Broadcast Encryption scheme
which provides authentication and non-repudiation
of messages [15]. This scheme is of a constant size for
private key and cipher text, yet the public key size is
linear depending on the number of system users.

Naor et al. [16] have also proposed two fully collu-
sion secure Broadcast Encryption schemes. Recipients
are assumed stateless, meaning that they do not need
to update their internal information from session to
session. Authors have presented two Subset-Cover re-
vocation algorithms, which provide the user revocation
feature. This method offers two improvements over
similar works: first, message length is reduced to O(r)
while maintaining a single decryption at the recipient
side. Second, it provides integration between revoca-
tion and tracing so that the tracing mechanism does
not require any changes to the revocation algorithm.

It has to be noted here that in most Broadcast
Encryption schemes, the list of recipients of a broad-
casted message is contained in the cipher text. Nev-
ertheless, in most practical cases, this information
is considered sensitive and confidential and should
not be revealed to others. In this respect, a number
of studies have focused their attention on providing
anonymity for Broadcast Encryption[12, 13]. Fazio
and Perera, for instance, in [12] have formally defined
the notion of outsider-anonymous broadcast encryp-
tion and proposed generic constructions in the stan-
dard model that can achieve outsider-anonymity un-
der adaptive corruptions in the chosen-plaintext and
chosen-ciphertext settings. In [13] too, Liber et al. have
proposed two generic constructions for Anonymous
Broadcast Encryption. The first construction can be
used to transform any public-key encryption scheme
with some security requirements into an Anonymous
Broadcast Encryption, while the second construction
uses any Identity-Based encryption system with some
weak security requirements.

In line with the abovementioned studies, Wang
and Liao [17] have presented an efficient encryption
protocol to be used in Broadcast Encryption systems.
This protocol is designed for mobile ad hoc networks
and constructs an encryption mechanism with low
storage requirements, useing a one-way key chain and
a polynomial function.

In their study, Jeong et al. have defined a new se-
curity requirement for Broadcast Encryption systems
[11]. This requirement is Consistency, by which each
recipient can be assured that all other recipients of
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the message have received exactly the same data. This
prevents the broadcaster to send a message to a set
of recipients, which can result in different extracted
data for different users. They have used Binding En-
cryption, Public key and private key encryption to
address this requirement.

2.2 Secure Multiparty Computation

In a Secure Multiparty Computation protocol, gener-
ally two or more parties intend to conduct a computa-
tion on their private inputs. However, neither of the
parties is willing to disclose his own input to anybody
else. Therefore, conducting such a computation while
preserving the privacy of the inputs is of paremount
importance in these protocols [18]. For example, if the
computation is larger than, which takes two inputs
and indicates whether the first input is larger or not;
the two participants each has a private number and
wants to know which number is larger. This problem
is called the millionaire problem and is introduced as
the first SMC protocol by Andrew C. Yao in [19].

SMC protocols can also be used in cloud comput-
ing environments. Given the growing role of cloud
computing infrastructure, organizations can improve
their efficiency while minimizing the expenditure and
the operation overhead. One of the major reasons be-
hind switching to a cloud based service is the users’
data privacy, which is supplied to the cloud provider.
This problem has been discussed by Maheshwari and
Kiyawat in [20], who attempted to provide SMC solu-
tion techniques that can be embedded while designing
the architecture of cloud computing center.

In this regard, two types of adversaries can be de-
fined for a SMC protocol, namely the passive type
(which has access to the victim’s data and cannot de-
viate from protocol steps) and the active one (which
can additionally deviate from protocol steps e.g. by
sending incorrect data) [21, 22].
Security of a SMC protocol can be discussed in the two
paradigms of an ideal world and a real world. In ideal
world, we assume the existence of a trusted third party
(TTP) who securely takes inputs from users, performs
the required calculations and distributes the result
to participants. This model can also incorporate dif-
ferent types of adversaries. The real world paradigm,
however, does not have a trusted third party. A SMC
protocol is secure in real world paradigm, if whatever
an adversary can do in real world can be simulated
in the ideal world by creating an appropriate adver-
sary model. This security analysis model is introduced
by [23–25] and is largely used in formal analysis and
proof of security of SMC protocols.

There is another specific type of SMC protocols
called server-assisted secure computation or privacy

preserving security protocols. In these protocols, we as-
sume that a lower computational power entity (client)
is interested in solving a computational problem C.
Yet there is another entity (called the server) which
is of a much higher computational power but is not
trusted by the client. In fact, the client wants to use
the server to solve his problem without revealing any
information about the problem. In these scenarios, the
client commonly generates a different (but related)
computational problem C and sends it to the server.
The server solves C and sends the result ś back to
the client. After receiving the response ś, the client
can apply a transformation on the response to obtain
the value of s, which is a solution to the original prob-
lem C. An example of this is the solution proposed by
Atallah and Frikken [26] to deal with the problem of
matrix multiplication, having preserved the privacy
of the client. SMC protocols make use of several cryp-
tographic techniques (secret sharing [27], threshold
homomorphic encryption [28], oblivious transfer [29])
in order to securely calculate different types of algo-
rithms.

Keng-Pi Lin and Ming-Syan Chen [30] proposed a
SMC protocol for the classification of privacy preserv-
ing using support vector machines. It is evident that
the data extracted from training samples in a clas-
sification problem can impose legal and commercial
threats to the privacy of customers. In this respect, the
present paper is aimed at introducing an approach to
post-process the SVM classifier in order to transform
it to a privacy preserving classifier, which does not dis-
close the private content of the support vectors. The
problem of privacy preserving classification is studied
by Luong et al. [31] as well, where a cryptographic
solution was presented for privacy preserving classifi-
cation rules learned in two-dimension distributed data.
In this paper, an algorithm is proposed for privacy
preserving computation of frequencies of a tuple of
values, which can ensure the privacy of users without
loss of accuracy.

In their study, Yu and Zhang have tried to introduce
a generic grid privacy preserving computation (G2PC)
model which supports privacy preserving analysis and
computation on data without compromising the pri-
vacy of raw node data or data statistics generated in
intermediate computations [32]. Privacy preserving
variance computation and k-means clustering algo-
rithms are used to provide evidence for the efficacy
and efficiency of the proposed scheme.

Elsewhere, Piyi Yang et al. in [33] have put forth
an efficient multidimensional privacy preserving data
aggregation scheme for Wireless Sensor Networks
(WSNs) which is of high security. This scheme provides
efficient countermeasures against passive and active
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privacy compromising attacks, coalition attacks and
is robust to data loss. The security enhancements of
the scheme imposes constant communication overhead
to the WSN, which makes it suitable for large-scale
networks.

Another SMC solution was also proposed by Mirsha
and Chandwani [34] in which a user unanimously
selects a trusted third party (TTP), called master
TTP, from among a large number of TTPs. This
master TTP can change over time, ensuring that no
single TTP controls the entire system all the time. At
the same time, this also indicates that no TTP knows
where the computation is taking place.

2.3 Applied Pi Calculus

Using process calculi to model security protocols was
first studied by Lowe [35], wherein a flaw in Needham-
Schroeder key distribution protocol is found by mod-
eling the protocol using CSP calculus. Later on, some
ad hoc calculi have been proposed for modeling cryp-
tographic protocols among which,the Spi Calculus
[36] and the applied pi calculus are the most widely
studied.

The applied pi calculus has been used to model
security protocols in a variety of areas. Abadi and
Blanchet [37], for instance, have used ProVerif [38] to
model a security protocol for certified email, message
secrecy and certificate receipt of the protocol. Kremer
and Ryan [39] have also used applied pi calculus to
model Fujioka, Okamoto, Ohta (FOO) electronic vot-
ing scheme [40] and analyze its fairness, eligibility and
privacy. Similarly, Delaune, Kremer and Ryan [41]
have modeled anonymity properties of electronic vot-
ing schemes, namely vote-privacy and receipt-freeness
using Applied Pi Calculus and analyzed these prop-
erties for two electronic voting schemes available in
the literature. In this regard, Kusters and Truderung
[42] have also come up with a new definition for co-
ercion resistance of an electronic voting scheme and
analyzed three voting protocols using applied pi cal-
culus. Kramer, Ryan and Smyth [43] have presented
a formal definition of election verifiability based on
boolean tests which distinguishes three aspects of veri-
fiability, including individual, universal and eligibility
verifiability. Applicability of this model is verified by
analyzing three electronic voting protocols,namely the
FOO [40], Helios [44] and Civitas [45]. This study is
further extended by Smyth et al. in [46].

In a similar vein, Chen and Ryan [47] have ana-
lyzed the security of Trusted Platform Module (TPM)
in case of sharing authorization values (authdata)
among multiple users and showed impersonation at-
tacks against TPM. They have also proposed a new
authorization protocol called Session Key Authoriza-

tion Protocol (SKAP) as a solution to this problem
which allows authdata to be shared without the pos-
sibility of impersonation attack. SKAP generalizes
the existing authorization protocols OIAP and OSAP.
Both the new and the existing protocols are analyzed
using ProVerif. As a result of these analyses, secrecy
and authentication of the proposed protocol is proved.

Backes, Maffei and Unruh [48] have proposed a for-
mal abstraction of zero-knowledge protocols using Ap-
plied Pi Calculus. A simple variant of Direct Anony-
mous Attestation (DAA) protocol is analyzed using
ProVerif. They found a novel attack which was over-
looked in its existing cryptographic security proof. A
revised variant of DAA is thus proposed which has
been proven to be secure.

Blanchet and Chaudhuri [49] have used ProVerif to
study security properties of a state-of-the-art protocol
for secure file sharing on untrusted storage. In this
study, several ambiguities and some unknown attacks
on the protocol are revealed. Finally, a correction to
the protocol is proposed which is guaranteed to be
secure.

Abadi, Blanchet, and Fournet [50] have studied
Just Fast Keying protocol (JFK) which is a fast key
establishment protocol to secure IP communication.
The protocol is formally analyzed in Applied Pi Cal-
culus and some ambiguities and minor problems are
revealed. Hence, a number of ideas and techniques are
developed which should be useful in specification and
verification of security protocols.

A number of security conscious web applications
use clientS to encrypt information that will be stored
on a web-server. Using this mechanism, no plaintext
data is kept on the server which will increase the
security of sensitive information. Bansal et al. [51]
have investigated a number of such web applications
(including password managers, cloud storage providers,
an e-voting website and a conference management
system). In their study, an automated formal analysis
is performed using ProVerif which has resulted in
finding novel attacks.

With the rise of Internet, electronic auctions have re-
cieved more popularity and are being used increasingly
worldwide. Today there are numerous security proto-
cols that address security requirements of these elec-
tronic transactions. Dreier, Lafourcade and Lakhnech
[52] have proposed a formal framework based on Ap-
plied Pi Calculus to analyze and verify various num-
bers of security requirements of e-Auction protocols
such as secrecy of bids, anonymity of the participants,
receipt freeness, coercion resistance, fairness, non-
repudiation and non-cancellation. Two case studies
have also been conducted to show how these proper-
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ties can be verified automatically using ProVerif to
discover several attacks.

One critical requirement in special security proto-
cols such as electronic voting is the privacy of users’
data. With the rapid development of more powerful
hardware and security attacks, one may wonder if such
information can remain secret after 20 years or even
forever. In their attempt to answer this question, Ara-
pinis et al. [53] have proposed a novel idea of practical
everlasting privacy. The key idea is that in the future,
an attacker may be more powerful in terms of compu-
tation (he may be able to break the cryptography) but
less powerful in terms of the data he can operate on
(some transaction of the protocols may not have been
stored). This notation is formalized using applied pi
calculus, and with the help of ProVerif, it is shown
that several variants of Helios (including Helios with
Pederson commitments [54]) and a protocol by Moran
and Naor [55] can indeed achieve practical everlasting
privacy.

3 Applied Pi Calculus

Applied pi calculus [56] is a formal language used to
model and encode security protocols and verify vari-
ous security requirements such as secrecy and authen-
tication. This language is a derivation of pi calculus
[57] first introduced by Robin Milner. This formal
language provides intuitive elements to describe par-
ticipants of a security protocol, their internal actions
(e.g., calculations, checking, and message creation),
and communications. Each participant is defined as a
process which can communicate with other processes
through channels. A channel is a two-way communi-
cation method between multiple processes. This lan-
guage is coupled with a formal semantics which en-
ables one to reason about security protocols. A wide
variety of cryptographic primitives and their relation-
ships can be modeled using equation theory. This lan-
guage allows us to define different types of security
goals and to ensure whether the protocol meets those
goals or not.

A signature Σ consists of a set of function symbols
such as hash, encrypt, and sign. Arity of a function
denotes the number of inputs it takes. A constant is a
function with arity of 0 [56].

For a given signature Σ, an infinite set of names
and an infinite set of variables, the set of terms is
defined as below:

L, M, N, T, U, V ::= terms
a, b, c,...,k ,..., m, n, s names
x, y, z variables
f(M1, ...,Ml) function application

In the definition above, l is the arity of function f
which can be any member of Σ. In order to separate
different types of information such as decryption key,
user identifier or bit-strings, we use a sort system
containing a set of data types which can be used in
a security protocol. The grammar for processes is as
below:

P, Q, R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
vn.P name restriction
if M=N then P else Q conditional
u(x).P message input
ū〈N〉.P message output

The null process 0 does nothing; P | Q means
execution of P and Q in parallel. !P denotes infinite
instances of P process executing in parallel (e.g.
P | P | P | ...). The process vn.P makes a new private
name n and behaves as P. The two last processes use
channel u to input a variable value or output a term
and then behave as P.
These processes can be extended with active substitu-
tions. Extended processes are defined as below:

A, B, C::= extended processes
P plain processes
A|B parallel execution
vn.A name restriction
vx.A variable restriction
{Mx } active substitution

{Mx } is a process which replaces variable x with
the term M. This definition floats and applies to any
process that comes into contact with it. We can extend
this definition to multiple substitutions and write:

{M1

x1
, M2

x2
, ..., Ml

xl
} for {M1

x1
} | {M2

x2
} | ... | {Ml

xl
}

Like programming languages, names and variables
have scopes, which are delimited by restrictions and by
input. Therefore, the set of free and bound variables
and free and bound names of A can be expressed by
fv(A), bv(A), fn(A) and bn(A), respectively.

Based on a signature Σ, we define an equational
theory, which defines an equivalence relation on terms
which is closed under substitution of terms for vari-
ables. For M=N in the theory associated with Σ, we
write Σ `M = N . When Σ is clear from context, we
may only write M=N [56].

We use Dolve-Yao’s [58] model to investigate pro-
tocol security. In this model, the attacker can read,
intercept and create any message and is only limited
by constraints of cryptographic primitives. In pi calcu-
lus, it is assumed that the attacker is the environment
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itself and has complete control over the public com-
munication channel. This implies that the attacker
can read any message that is transmitted between two
processes using a public channel and sends any mes-
sage to any process waiting to read a message from a
public channel.

In order to define and investigate authentication
properties, we take advantage of correspondence. Cor-
respondence properties are used to capture the rela-
tionship between events that are raised during the
execution of the security protocol. Moreover, these
events can contain parameters which can be used to
define the relationship between parameters of differ-
ent events. In order to evaluate protocols in terms of
correspondence properties, we annotate them with
events which mark important stages of the protocol
(e.g. AcceptClient, DecryptMessage, ). These events
are messages that output through an event channel.

4 The Proposed Scheme

We extend our previous protocol (DZMBE) [59] to
propose a secure, fair, and dynamic broadcast encryp-
tion scheme based on secure multiparty computation
(Which we call DZMBE+).

This new scheme consists of a broadcaster, which
sends messages of different types to subscribers (users).
When subscribing for a messages group, the user re-
ceives a group-based private key, which can be used
in cooperation with other subscribers to execute a
SMC protocol to rebuild the message decryption key
while at the same time preserving confidentiality of
the private data of the user. The group-based private
key is created using a threshold secret sharing scheme.
Having the message decryption key at hand, each user
can decrypt the message received and access to the
original data.

Given this new scheme, the recipients are assumed
to be stateless. This implies that the recipients are
not required to update any kind of information from
session to session. Our proposed scheme consists of
four phases, as described below. Two phases (message
broadcast and message retrieval) are operational and
the other two (group setup and user subscription) are
aimed at management of user groups.

The broadcaster sends different types of messages.
Each of these types is called a group. In order to define
a new group of messages, group setup phase has to be
executed. Adding new members to this scheme is done
with no effects on other parts of the scheme. When
a new member is added, user subscription phase is
performed and he will receive his own identifier and
private share, which can be used to decrypt broadcast

messages of the related group later.

To revoke a user from a group, the broadcaster
needs to re-create shares of other users and inform
their new shares. Since the revoked user has a valid
share, which can be used in message retrieval phase,
the broadcaster needs O(n) communications to inform
other users of their new shares. During a membership
revocation, the broadcaster needs to re-execute the
group setup phase and for each non-revoked user, User
subscription will be re-executed to update members’
subscription information.

4.1 Group Setup Phase

In order to setup a new group g, the broadcaster creates
a random group identifier, IDg, and a random private
group key, kg. It has to be noted that the value of this
private group key is only known to the broadcaster.

In addition, a public random generator,hg, is se-
lected by the broadcaster for the new group. The
broadcaster sets up Shamir’s (t,n) threshold secret
sharing scheme using an appropriate value for param-
eter t. This parameter depends on the level of security,
which is desired for that group. For example, in the
case of a group with highly confidential messages, this
parameter will be much higher in comarison with that
of a group about public sport news.

After selecting an appropriate value for t, the broad-
caster chooses t coefficients a1, ..., at−1, where a0 =
kg (group key) and a1, ..., at−1 are randomly selected.
Now the broadcaster has a polynomial, which can be
used to generate new shares for members of this group:

fg(x) = a0 + a1x + a2x
2 + ... + at−1x

t−1

Using this polynomial, fg, it is possible to generate
any number of shares for the subscribers of this group.

Besides, the group identifier IDg and a description
of the group are added to a public bulletin board in
order to inform the potential subscribers about the
new service of the broadcaster and its price.

4.2 User Subscription Phase

When a user wants to register to receive a specific
group of messages (e.g., sports and business news), he
uses a secure channel to send a registration request to
the broadcaster. This request contains group identifier
(IDg) and a payment token used to prove that the
user has paid the appropriate amount of money to a
payment server. A detail of the payment method used
for this operation and generation of a payment token
is beyond the scope of this paper.
After checking the validity of the payment token, the
broadcaster assigns a unique user identifier, IDu to
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Figure 1. General structure of a broadcast message

IDm IDg EMKg,m(SN,Data)

the user. One method to generate this identifier is
by applying a secure one-way hash function on the
identity information of the user. The user’s private
group key is a share of group’s polynomial and is
calculated as below:

UKg,u = fg(IDu)

(IDu, UKg,u) are sent to the new user using a secure
channel after they are stored in users database.

The subscriber will store these values in his local
storage and will use these data in Message retrieval
phase to calculate the message decryption key. The
value of IDu is not private and can be sent to other
users, but kUKg,u is a private user key which should
be kept confidential.

4.3 Message Broadcast Phase

Suppose that the broadcaster is to broadcast a mes-
sage m, which belongs to group g with IDg as the
group identifier. He first selects a random message
identifier, IDm, and calculates the message encryp-
tion key, MKg,m according to the formula below:

MKg,m = z(h
kg
g )IDm

Where z is a public generator. Thus the original
data is encrypted under the message encryption key
MKg,m, using a secure symmetric encryption algo-
rithm (e.g. AES). A sequence number (SN ) is also
used to prevent adversary from replay attacks. The
final message will consist of a message identifier, a
group identifier, the sequence number and the cipher
text.

It is noteworthy that this final message will be
broadcast to all users.

4.4 Message Retrieval Phase

After a message is broadcasted, recipients will check
the message header and extract the group identifier.
In fact, they check whether they have subscribed for
the message group, IDg. If the answer is positive, the
member can cooperate with any other t members to
calculate the value of the message decryption key. The
message retrieval phase is performed in two steps, as
described below:

(1) First, each member uses his private data and
other members’ public information to calculate
a partial decryption key. While this key cannot
be used for decryption operations, it will be
employed in the next step to calculate a message
decryption key.

(2) Then, the members execute SMC-MULT proto-
col to combine their partial decryption key and
calculate the message decryption key.

To execute the SMC-MULT protocol between t
users, we suppose that the participant users have
identifiers of 1,,t.

1 ≤ u ≤ t

This assumption is made to simplify notations and
does not impose any limitations of the correctness
on the algorithm. The target function going to be
calculated by the participants is:

MḰg,m(.) = zh
IDmΣt

u=1
UKg,ulg,u(0)

g

lg,u(x) =
Qt

m=1,m 6=u
x−IDm

IDu−IDm

Note that in the above formula, UKg,u denotes each
user’s private group key and lg,u(x) is a polynomial,
which is calculated according to the Lagrange’s poly-
nomial formula. It has to be remembered that each
user can calculate the value of lg,u(0) by just having
the user identifiers of other participants, i.e. the public
information.

Every member can calculate his private value of
UKg,ulg,u(0) which will be denoted by ∆u.

∆u = UKg,ulg,u(0)

Therefore, the target function can be rewritten as:

MḰg,m(.) = zh
IDmΣt

u=1
∆u

g

= z(h
IDm∆1
g .h

IDm∆2
g ...h

IDm∆t
g )

= zp1p2...pt

pu = hIDm∆u
g is known as a partial decryption key,

which can be calculated by each user by just having
the identifiers of other participants at hand.

The final target function will thus be:

MḰg,m(.) = z
Qt

u=1
pu

In order to calculate the value of MḰg,m, the users
participate in execution of SMC-MULT(z, p1, p2, ..., pt).
After running this sub-protocol, each user will have
access to the value of MḰg,m. This sub-protocol is
being described in details in the following section.
Having calculated the value of MḰg,m, the message
decryption key can be used to decrypt the message
data (In other words, in case the protocol proceeds
properly, it is expected that MḰg,m = MKg,m.

The SMC protocol proposed in this paper enjoys
the following advantages:

• The SMC protocol is correct. It calculates the
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result correctly if inputs are correct (This can be
proved according to the abovementioned formu-
las).

• No confidential information for any participant
user may be exposed to an attacker or other par-
ticipants. The information sent by each member
to others is his partial decryption key (pu) which
can be expressed using the formula below:

pu = hIDm∆u
g = h

IDmUKg,ulg,u(0)
g

In the above formula, the value of UKg,u is re-
garded as sensitive information and should remain
private. The only publicly available data is pu,
however, to calculate UKg,u, one needs to solve
the discrete logarithm which has no polynomial-
time algorithm [60].

The message retrieval phase can be performed in
one of two following modes: Interactive vs. Offline.
In the interactive mode, t parties cooperate and exe-
cute SMC-MULT protocol and exchange data with
each other to calculate the message decryption key (as
explained above). Yet this mode is of one major dis-
advantage in that it may be difficult for a member to
find other t-1 parties who are ready for participation
in the protocol with each other at the same time.

In order to deal with this issue, members can use
the offline mode, in which a member sends requests
to all other members asking them to provide him with

their calculated partial decryption keys (h
IDmUKg,u
g )

and user identifiers. Having gathered sufficient partial
decryption keys of other members, the user will be
able to combine the keys and calculate the message
decryption key without having to find t-1 participants
willing to execute the appropriate protocol at the same
time.

Finally the last step is to check the monotonicity of
the received sequence number (SN). In case that the
sequence number of the message is not greater than
the most recent received SN, the message is discarded.

5 SMC-MULT Protocol

This protocol has t participants (U1, U2, ..., Ut), each of
which having pi, 1 ≤ i ≤ t, respectively. Participants

are to calculate the value of y = z
Qt

u=1
pu , where z is

a public group generator. Each pi is a secret piece of
information and cannot be revealed to any other party,
even a trusted third party. To execute this protocol,
users make a ring, meaning that the user after Ui will
be Ui+1 if i < t or U1 if i = t. The user after Ui in the
ring will be denoted by Ui+1 for simplicity.

This protocol is executed in t rounds. A definition
of round i is provded below:

Figure 2. Message structure for a fair broadcast protocol

IDm IDg ETg,m,b−1
(SN,Data)Tg,m,b

CV1 = H(Tg,m,1), CV2 = H(Tg,m,2)
...

CVb−1 = H(Tg,m,b−1), CVb+1 = H(Tg,m,b+1)
...

CVw = H(Tg,m,w), CVb = H(Tg,m,b)

(1) Ui is the round starter, which selects a random
number b and calculates b−1.

(2) Ui sends zbpi to the next user in the ring. The
recipient user is known as Ui+1.

(3) The recipient user raises the received data to
the power of his private information (pi+1) and
sends the result (zbpi)pi+1 to the next user in
the ring.

(4) The previous step is repeated until the data is
returned to the starter user (Ui).

(5) Ui raises the input to the power of b−1.
(6) The result is zpipi+1pi+2...ptp1...pi−1 = zp1p2...pt .

This round is executed t times. It has to be noted
that in each execution i, user Ui will be the starter.

Once the protocol is finished, the value of the target
function will be available to each participant, while no
confidential information is sent to any external entity.

6 Improved Scheme

It is noteworthy here that there is one major prob-
lem with the proposed scheme in that it fails to stop
cheaters. A cheater is a user that sends incorrect data
to others while receives the others’ correct data and
thus is able to calculate the value of the target func-
tion. Therefore, it is necessary to ensure that either
all or none of the participants will be able to calculate
the message decryption key.

In order to eliminate cheaters and add fairness to
our SMC-MULT protocol, an improved version of the
scheme is proposed based on the protocol explained
in [61]. As for this new scheme, the group setup phase
and user subscription phase are similar to the original
scheme, and hence their explanation is not included
here. The message broadcast and message retrieval
phases are being described below though.

6.1 Message Broadcast Phase

Given the improved scheme, the message is created
the same as the original scheme with a check vector
is added to the end of the message, which contains w
items.

In this new structure Tg,m,i = ((zhg
kg

)IDm)l, where
kg is the private key of the message group. H denotes
a secure hash function. The broadcaster selects a fair-
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ness length parameter w, which indicates the number
of H(Tg,m,i) values that will be added to the message.
In order to prepare a message for broadcasting, the
broadcaster calculates Tg,m,i values and selects a ran-
dom b ⊂ {1, ..., w− 1}. The original data is encrypted
under Tg,m,b−1 and the result is raised to power Tg,m,b.

6.2 Message Retrieval Phase

In order to decrypt this data, recipients need to find
out the values of both Tg,m,b and Tg,m,b−1; neverthelss,
they will not know value of b beforehand. This phase
is executed in a similar way to the original scheme,
with SMC-MULT being executed multiple times (at
most w times). The steps of this phase are the same
as the basic scheme with the only difference that, it is
executed more than once and during the ith execution
of the protocol, the users’ inputs are raised to power i.

If Tg,m,i will be the result of the ith execution of
SMC-MULT protocol, each participant will have this
value at the end of the protocol execution. Now, the
users perform a check operation. Through this step,
they will realize if there is a cheater among them and
if not, they can assure whether they have found out
the value of the message decryption key or not.

Then each user hashes their value of Tg,m,i and
compares it with CVi and CVb. At this stage, three
possible scenarios can occur:

(1) H(T́g,m,i) = CVi

(2) H(T́g,m,i) 6= CVi, H(T́g,m,i) 6= CVb

(3) H(T́g,m,i) 6= CVi, H(T́g,m,i) = CVb

In scenario 1, there is no cheater and users have not
yet calculated the message decryption key.

In scenario 2, it is indicated that there is a cheater
among the participants. Thus, the users stop executing
the protocol at this step.

In scenario 3, Tg,m,b is the users’ calculated candi-
date message decryption key and the actual message
decryption key is Tg,m,b−1 which was previously cal-
culated.

Having the values of Tg,m,b and Tg,m,b−1 at hand,
the users can raise the encrypted message to T−1

g,m,b

and decrypt the result using Tg,m,b−1 as shown below:

(ETg,m,b−1
(Data)Tg,m,b)Tg,m,b

−1

= ETg,m,b−1
(Data)

DataTg,m,b−1
(ETg,m,b−1

(Data)) = Data

After each round of execution of SMC-MULT, the
parties hash the result Tg,m,i and compare it with the
value provided in the message. In case any conflict is
observed, they stop the protocol execution.

7 Analysis

7.1 Privacy

With ever increasing online communications, privacy
is considered as an important factor in today’s net-
works. In fact, it is desired to decrease the number of
entities that have access to users’ information (includ-
ing their identity, billing address, and postal address)
to the least possible. In addition, user’s preferences
(what messages or contents each user likes) need to be
confidential. The method proposed in this paper pro-
vides this type of privacy. In our scheme, each user’s
identity information is hidden from all parties. When
a new user is subscribed in a group to receive certain
types of messages, he sends a subscription request to
the broadcaster. This request contains no identity in-
formation (only a randomly chosen identifier and a
payment receipt). As a result, the broadcaster will not
be able to deduce his customer’s identity.

Another feature of this scheme is that no one will
be able to link preferences of a user to his identity. As
users subscribe for a message channel anonymously,
even the broadcaster is not be able to determine which
groups of messages a user is interested in.

Additionally, when broadcasting a message, only
the group identifier is broadcast, and thus no external
entity with any amount of wiretapping transmitted
information knows the identity of members of a group,
which in turn will increase the privacy of users.

7.2 Collusion Resistance

In a broadcast encryption system, a center sends a mes-
sage to a set S of users U, where S ⊆ U . Any member
of S can decrypt and read Center messages. However,
even if all members of U collude, they can obtain no
information about the contents of the message. Such
systems are said to be collusion resistant [62].

Our proposed scheme is also collusion resistant as
no user outside the eligible recipient group can extract
any knowledge from the broadcast message. That is
because the message is encrypted with a key that can
only be extracted if a user has a valid share, which
belongs to the message group. As an example, suppose
that e, who is not a member of S, wants to decrypt
a received message. In order to obtain the message
decryption key, e needs to cooperate with (t-1) other
eligible recipients and execute the message retrieval
protocol. During the execution of the first round of
this protocol, t-1 members will find out that there is a
cheater among them and hence, will stop proceeding
the execution. As a result, it can be viewed that no
one outside S will be able to calculate the message
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decryption keys. It has to be added that increasing
the size of collusion of illegible users will not change
the situation.

7.3 Flexibility

It is known that the cooperation among the message
recipients is costly and requires a certain number of
communications. On the other hand, this feature as-
sures the security of the scheme and prevents unautho-
rized users to access messages. As we are using (t,n)
threshold secret sharing protocol, the broadcaster can
choose a value of t adaptive to the security level and
communication requirements of its own network.

Besides, using a threshold secret sharing scheme
makes our scheme more flexible, because when some
recipients are not available or when communication
problems occur, users are free to choose alternative
recipients to communicate and build the message de-
cryption key. Actually, if a message has n recipients
and the scheme is based on (t,n)-threshold secret shar-
ing, each of n recipients is required to select only t-1
other recipients to decrypt the message. And in fact,
the user can use any factor (such as the communica-
tion cost or trust to other users) to select these t-1
users. This parameter makes the scheme even more
flexible for system users.

In Wireless Sensor Networks (WSNs), one major
performance factor is communication cost. In these
systems, a communication with a distant sensor con-
sume a lot of power which is a valuable resource. Our
method enables such systems to adapt and select t
near neighbors to perform OTK reconstruction. This
reduces power consumption while the system will re-
main secure at the same time.

7.4 Fairness

Our improved scheme also provides fairness in that it
is able to eliminate cheaters. This scheme ensures all
participants that either all of them will get the final
key or no one will be able to calculate anything.

Suppose that one of the participants is a cheater
who wants to send out incorrect values to others and
use their correct values to build the secret and decrypt
the received message. In case of successful cheating,
other participants will not be able to calculate the de-
cryption key while the cheater will have this data. This
will provide an unfair advantage to cheaters, which
makes the scheme impractical in sensitive implemen-
tation scenarios. The cheater needs cooperation of t-1
other users in order to calculate any of Ti values. Ad-
ditionally, he needs to guess the correct value of. As a
result, the probability of successful cheating will be 1

w
where w is the number of Ti values in the check vector.

Hence, in order to decrease chances of cheating, the
broadcaster needs to select an appropriate value for
w. Higher values for w will decrease the probability of
cheating while communication costs increase. Lower
values will facilitate the cheater’s job while imposing
less burden on honest users.

7.5 Forward and Backward Secrecy

A group communication system provides perfect for-
ward secrecy if a member leaving the group at time t
does not gain any information about the content of
the messages communicated at times t́ > t [63]. In
order to provide perfect forward secrecy, the center
needs to update the privacy of group members, for
each group in which the revoked user was subscribed.
To this end, the following steps are required to be
followed for each of those groups:

(1) First, the center selects a random r.
(2) For each group member, Center broadcasts

M = {IDu, IDg, EUKg,u(r)} as a special group
management message. Although this message is
broadcast, the recipient of the message is only
one user. If a user is a member of more than one
group, all required group management messages
for that user can be combined to form a single
message. This will reduce the communication
cost.

(3) Upon receiving message M, the user decrypts
the message using his private user key (UKg,u)
to find the value of r.

(4) The recipient user updates his private user key
by adding it to r, and therefore, the updated
user key will be (UKg,u + r).

(5) Once the broadcasting operation is finished, the
center updates the group key kg to (kg + r).

A group communication system provides perfect
backward secrecy if a member joining the group at
time t does not gain any information about the con-
tent of the messages communicated at times t́ < t
[63]. In order to provide backward secrecy, the center
needs to inform members of the group g in which a
new user is going to be subscribed, to update their
private user keys (UKg,u). To this end, the center
selects a random r and updates the group key from
kg to (kg + r). Hence, the group polynomial will be:

fg(x) = (kg + r) + a1x + a2x
2 + ... + at−1x

t−1

In order to update private user keys for all member
of the group, the only required action is to add r to the
user keys. The value of r is randomly chosen and does
not reveal any information regarding fg or kg. Thus,
the center can broadcast a special group management
message to a member of group g and declares the value
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of r. Each recipient only needs to add his private user
key with r to have a correct key. Having updated the
process, the center can use the new group polynomial
to calculate the subscription information for the new
user.

7.6 Comparison

In our broadcast encryption scheme, adding users is
done in O(1), however, revoking an existing member
requires O(n) complexity. Moreover, the cipher text
length is O(1), meaning that the length of the cipher
text is independent of the number of recipient users. In
most broadcast encryption schemes, one constant part
of the messages is a list of recipients, which is linear
to the size of recipient users, yet this is not usually
counted towards the cipher text length. In our scheme,
the notion user groups’ is used. A user group is a group
of recipients all of whom are interested in receiving
specific message types (e.g., different channels in IPTV
systems). When a sender wants to broadcast a message,
a group id is attached to message data according to the
message type. Therefore, the users can decide whether
they are recipients of the message or not.

Table 1 summarizes some other well-known broad-
cast encryption schemes in terms of the following pa-
rameters:

(1) Cipher text Length: length of the cipher text of a
message that is broadcast to a set of n recipients.

(2) Key length: Length of the key material that each
user of the system needs to store.

(3) Cost of new members: How much new data is
to be communicated when a new member is
introduced to the system.

(4) Cost of revoking: How much data is to be com-
municated in order to update the system when
a user is revoked.

(5) Consistency [11]: which is a feature of a secret
broadcast system and means that each receiver
can assure that all of the receivers have received
the same message. In fact, if sender cannot send
a message to a group of recipients in a way that
each recipient gets a different message, then the
system is consistent.

(6) Encryption/Decryption complexity: which
refers to the computation complexity the sender
(or broadcaster) and each of recipients have to
perform in order to act according the system.

The first protocol is a trivial protocol which is a
general construct describing the worst case in Broad-
cast Encryption. In this protocol, each user has its
own key and the broadcaster broadcasts n different
messages for n recipients. In this scheme, a new mem-
ber/revoke membership requires no extra communica-
tion as each user stores his private key. However, the

Table 1. Comparison of some private-key broadcast encryption
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Trivial O(n) O(1) O(1) O(1) No O(n) O(1)

FN1 [2] O(1) O(logn) O(logn) O(logn) No O(1) O(1)

FN2 [2] O(1) O(1) N/A N/A Yes O(n) O(n)

DPP-3 [9] O(r) O(1) O(n) O(n) No O(r) O(r)

DWGW [14] O(n) O(2n) O(n) O(n) No O(n) O(n)

Proposed Method O(1) O(1) O(1) O(n) Yes O(1) O(t)

main problem in this scheme is that the length of the
cipher text is linear to the size of recipient set. This
problem eliminates the real benefits of broadcast en-
cryption because as the number of message recipients
increases, so does the cipher-length and the overhead
of the broadcaster grows as well. Thus the scheme is
not scalable and is only viable for a little number of
users. That is why it is called trivial scheme.

In Table 1 below, the last row belongs to the method
introduced in this paper. These results provide evi-
dence for the advantages of our scheme (in terms of
encryption/decryption complexity) over most of simi-
lar schemes, which makes our scheme highly scalable
for large scale applications.

It can be observed from the table that generally
speaking, the only other scheme that provides consis-
tency is FN2 with a lower performance in encryption
complexity. This scheme also does not support member
addition and revoking. It is viewed that the proposed
scheme outperforms DPP-3 in terms of the cipher text
length, cost of new member, consistency and encryp-
tion complexity. A comparison with DWGW in terms
of providing consistency, cost of new members, key
length, cipher text length and encryption complexity
also indicates the superiority of the proposed scheme.

8 Formal Modelling and Analysis

In order to model our protocol and verify its secu-
rity requirements, applied pi calculus was used. Since
we are not interested in verifying the fairness of the
scheme (due to limitations of our tools), we just aim
to model the basic version of our scheme.

In order to automate the verification step, ProVerif
[38] is being employed. Four security properties of the
scheme are thus verified and proved to be satisfied:
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(1) Confidentiality of the broadcasted message
(2) Secrecy of the users’ private keys
(3) Anonymity of the users
(4) Authentication of the sender

Due to special syntax of ProVerif, we have modelled
our protocol for t=3, four recipient users and a single
group. This model can easily be extended for a larger
number of users and groups or different values of t.

In this regard, two public channels are used to model
our protocol:

• Broadcast Channel : used by the broadcaster to
send messages to recipients.

• Smc Channel : Used among recipients to perform
SMC protocol to calculate the message decryption
key.

Below is a list of free and constant names that are
used in the protocol:

• uNamei : Identity information of the ith user.
• groupSecretKey : Secert group key which is private

and only the broadcaster knows (kg).
• groupIdentifier : Public identifier of the group.
• messageIdentifier : Public identifier of the broad-

cast message.
• groupGenerator : Public generator of the group

(denoted by z in the scheme).
• tag : A tag is used to enable users to check whether

they have decrypted the message with the right
key or not. If the decryption result has this special
tag at the beginning, that key and/or message is
known as not corrupt. This tag is prefixed to the
messages by the broadcaster.

We define encrypt and decrypt functions to model
the symmetric-key encryption of the messages. In
order to indicate the relation between these two func-
tions, the reduction rule below is used:

reduc forall m: bitstring, k: Key;
decrypt(encrypt(m, k), k)=m.

The above rule implies that for all messages and keys,
decryption of encryption of those messages results in
the same message, when done under common keys.

In this respect, hashName function is used to cal-
culate unique user identifiers based on user identity
information.

calculatePDK function is also used to calculate par-
tial decryption keys for each user. This function re-
ceives a user key and a message id and the resulted
value will be hIDm∆i

g , according to the protocol defi-
nition provided in the Proposed Scheme section.
groupFunction is used to calculate private user keys.
This function uses the group secret key and the ap-

propriate polynomial for Shamir’s secret sharing to
create a share for a user.

getSequenceNumber and checkSequenceNumber
methods are used by the broadcaster and receivers
respectively to make sure that a received message is
not a replay of an old message.
In the same vein, Power and unpower functions are
used for power operations. Power raises a number to
a given power and unpower raises a number to the
inverse of the given parameter. This function is used
to implement SMC-MULT protocol functionality. A
set of reduction rules are defined to model threshold
secret sharing. These rules express that any combina-
tion of the three users’ shares can be used to calculate
the message decryption key.

In order to model the scheme, the two following
processes are defined:

◦ centerProcess : This process models the behavior
of the broadcaster. After selecting a random
message identifier, a message encryption key
is created by applying calculateMK function.
Then the message identifier, group identifier and
the encrypted message are broadcast using the
broadcastChannel.

◦ userProcess: This process models a message re-
cipient. After receiving data from the broad-
castChannel and checking it’s group, a partial
decryption key is calculated using calculatePDK
method. In the next steps, SMC MULT proto-
col is executed through sending the partial de-
cryption key powered to a random number b and
sending (originator, data) using smcChannel.
Originator is the identifier of the user that has
sent the message. After receiving his message,
the user can unpower the payload and the result
will be the message decryption key. Any received
message on smcChannel whose originator is not
the user himself will be powered to the partial
decryption key and sent out on the channel.

The input script to ProVerif too is provided below:

1. const tag: bitstring.

2.

3. free broadcastChannel: channel.

4. free smcChannel: channel.

5.

6. type UK.

7. type UID.

8. type GK.

9. type MessageId.

10. type Key.

11. type sequenceNumber.

12.

13. const groupGenerator: Key.
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14.

15. free uName1: bitstring [private].

16. free uName2: bitstring [private].

17. free uName3: bitstring [private].

18. free uName4: bitstring [private].

19.

20. free groupSecretKey: GK [private].

21. free secretMessage: bitstring [private].

22. free groupIdentifier: bitstring.

23.

24. query attacker(secretMessage).

25. query attacker(groupSecretKey).

26.

27. query attacker(uName1).

28. query attacker(uName2).

29. query attacker(uName3).

30. query attacker(uName4).

31.

32. query mid: MessageId; event(clientGetMessage(mid)) ==¿

33. event(serverSentMessage(mid)).

34.

35.

36. event serverSentMessage(MessageId).

37. event clientGetMessage(MessageId).

38.

39. fun groupFunction(GK, UID):UK.

40. fun calculatePDK(UK, MessageId):Key.

41. fun encrypt(bitstring, Key): bitstring.

42. fun hashName(bitstring): UID.

43. fun checkSequenceNumber(sequenceNumber):bool.

44. fun getSequenceNumber(): sequenceNumber.

45. fun power(Key, Key): Key.

46.

47. reduc forall p1: Key, p2: Key;

48. unpower(power(p1, p2), p2)=p1.

49.

50. reduc forall m: bitstring, k: Key;

51. decrypt(encrypt(m, k), k)=m.

52.

53. reduc

54. forall id1: UID, id2: UID, id3: UID, mid: MessageId, gsk: GK;

55. calculateMK(gsk, mid, id1, id2, id3 ) =

56. power(power(power(groupGenerator,

57. calculatePDK(groupFunction(gsk, id1), mid)),

58. calculatePDK(groupFunction(gsk, id2), mid)),

59. calculatePDK(groupFunction(gsk, id3), mid));

60. forall id1: UID, id2: UID, id4: UID, mid: MessageId, gsk: GK;

61. calculateMK(gsk, mid, id1, id2, id4 ) =

62. power(power(power(groupGenerator,

63. calculatePDK(groupFunction(gsk, id1), mid)),

64. calculatePDK(groupFunction(gsk, id2), mid)),

65. calculatePDK(groupFunction(gsk, id4), mid));

66. forall id2: UID, id3: UID, id4: UID, mid: MessageId, gsk: GK;

67. calculateMK(gsk, mid, id2, id3, id4 ) =

68. power(power(power(groupGenerator,

69. calculatePDK(groupFunction(gsk, id2), mid)),

70. calculatePDK(groupFunction(gsk, id3), mid)),

71. calculatePDK(groupFunction(gsk, id4), mid));

72. forall id1: UID, id3: UID, id4: UID, mid: MessageId, gsk: GK;

73. calculateMK(gsk, mid, id1, id3, id4 ) =

74. power(power(power(groupGenerator,

75. calculatePDK(groupFunction(gsk, id1), mid)),

76. calculatePDK(groupFunction(gsk, id3), mid)),

77. calculatePDK(groupFunction(gsk, id4), mid)).

78.

79.

80.

81. let centerProcess() =

82. new msgId: MessageId;

83. let mk = calculateMK(groupSecretKey, msgId, hashName(uName1),

84. hashName(uName2), hashName(uName3)) in

85. out(broadcastChannel, (msgId, groupIdentifier,

86. encrypt((tag, getSequenceNumber(), secretMessage), mk)));

87. event serverSentMessage(msgId);

88. 0.

89.

90.

91. let userProcess(myUserKey: UK, userId: UID, myGroup: bitstring)

=

92. in(broadcastChannel, (msgId: MessageId, gId: bitstring,

93. encryptedMessage: bitstring));

94. if ( gId = myGroup ) then

95. let pdk0 = calculatePDK(myUserKey, msgId) in

96. new bFactor: Key;

97. out(smcChannel, (userId, power(power(groupGenerator,pdk0),

bFactor)));

98. in (smcChannel, (originator: UID, payload: Key));

99. if ( originator = userId ) then

100. (

101. let mdk = unpower(payload, bFactor) in

102. let (mtag: bitstring, ts: sequenceNumber, msg: bitstring) =

103. decrypt(encryptedMessage, mdk) in

104. if ( mtag = tag AND checkSequenceNumber(ts) ) then

105. event clientGetMessage(msgId)

106. )

107. else if ( payload ¡¿ groupGenerator ) then

108. out(smcChannel, (originator, power(payload, pdk0)));

109. 0.

110.

111. process

112. let uid1 = hashName(uName1) in

113. let uid2 = hashName(uName2) in

114. let uid3 = hashName(uName3) in

115. let uid4 = hashName(uName4) in

116. let uk1 = groupFunction(groupSecretKey, uid1) in

117. let uk2 = groupFunction(groupSecretKey, uid2) in

118. let uk3 = groupFunction(groupSecretKey, uid3) in

119. let uk4 = groupFunction(groupSecretKey, uid4) in

120. (centerProcess())

121. —

122. !(

123. userProcess(uk1, uid1, groupIdentifier) —
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124. userProcess(uk2, uid2, groupIdentifier) —

125. userProcess(uk3, uid3, groupIdentifier) —

126. userProcess(uk4, uid4, groupIdentifier)

127. )

Given the above data, lines #23 through #32 relate
to queries that check the security properties of the
scheme. In the same vein, the first six queries check
the confidentiality of secretMessage, groupSecretKey
and identities of the users.
The last query, checks the authentication of the server.
This query verifies that in every possible execution, if
event clientGetMessage(id) is fired, there must be a
correspondent event serverSentMessage(id) with the
same message identifier.

9 Further Work

One important feature of a Broadcast Encryption
system is traitor tracing. Suppose that a member of a
system builds a Decoder machine and sells it to other
illegal users. This machine participates in the message
extraction protocol and behaves exactly like a normal
user. This will enable illegal users to extract messages.
However, the method proposed in this paper does not
address traitor-tracing concerns, which is regarded as
an open problem to be tackled in future studies.

Another related open problem is the broadcaster’s
ability to convince a third party (usually an arbitrator)
that a user of the system is also a member of a traitor
set. Most traitor tracing protocols enable a broadcaster
to find out if a user is a traitor, yet they appear not
to be able to transfer this knowledge to another third
party as a proof.

In addition, one practical feature of a Broadcast En-
cryption is its ability to support multiple broadcasters.
For example, in an IPTV scenario, there might be
multiple content providers, that want to use a shared
broadcasting network to send information to their
subscribers. Addressing this problem in our method
requires some modification. A trivial solution would
be to share user information (user keys and identi-
fiers) among all broadcasters but this will increase
the maintenance cost and decrease the security of the
system. Providing more robust and secure methods is
thus required to deal with this issue.

10 Conclusion

The present paper was intended to define a new dy-
namic and fair scheme for broadcast encryption based
on secure multiparty computation and threshold se-
cret sharing which is at the same time flexible and

lightweight. The proposed scheme is indeed dynamic
in the sense that adding a new member has no effect
on other members of the system. In addition, we de-
fined a security parameter t (used in threshold secret
sharing) which makes the scheme more flexible. A se-
cure multiparty computation protocol is also proposed
which enables each set of t group members to cal-
culate the message decryption key without revealing
their private information. The security of the scheme
is verified using applied pi calculus and ProVerif tool
as well.
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