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A B S T R A C T

Digital signatures are used to ensure legitimate access through identity

authentication. They are also used in blockchains and to authenticate

transactions. Code-based digital signatures are not widely used due to their

complexity. This paper presents a new code-based signature algorithm with

lower complexity than existing methods and a high success rate. The key

generation algorithm constructs three-tuple public keys using a dual inverse

matrix. The proposed signing scheme is based on the McEliece cryptosystem. It

includes an integrity check to mitigate forgery before verification.

© 2023 ISC. All rights reserved.

1 Introduction

Traditional cryptographic algorithms such as
Rivest–Shamir–Adleman (RSA) and elliptic

curve cryptography (ECC) rely on mathematical
problems that are difficult to solve with classical
computers. However, quantum computers have the
potential to solve mathematical problems such as
factoring large numbers exponentially faster than
classical computers. The goal of post-quantum cryp-
tography [1] is to develop cryptographic algorithms
that are secure even when attacked using quantum
computers [2–4]. These algorithms are based on prob-
lems that are believed to be hard even for quantum
computers to solve. Post-quantum cryptographic
schemes have been developed based on error correct-
ing codes, lattices, and multivariate polynomials.
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The first code-based cryptosystem was introduced
by McEliece [5]. To date, there is no attack that
can break this cryptosystem in polynominal time [6].
However, code-based signatures are not widely used.
One reason is that the ciphertexts do not cover the
entire vector space [7, 8]. For example, on average it
takes t! executions of the Courtois-Finiasz-Sendrier
(CFS) construction to obtain a valid signature [9].
In [10], a signature scheme based on the McEliece
cryptosystem was proposed that covers the entire
vector space. This results a higher success rate and
thus a lower processing time for signature generation.
A random parity check matrix inverse is employed
which is difficult to determine by an adversary. In
particular, the probability of constructing a specific
inverse matrix is 2−k(n−k) which is negligible if the
parameters are chosen appropriately [10].

In this paper, a dual matrix A is employed which
is both the inverse and transpose of the parity check
matrix. This matrix is used to develop signing and
verification schemes. In addition, a key generation
algorithm is given to construct public and private
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keys.

1.1 The McEliece Cryptosystem

A binary linear block code generates a codeword c =
(c1, c2, . . . , cn) for a message m = (m1,m2, . . . ,mk),
so there are 2k distinct codewords. The set of code-
words is referred to as a C(n, k) block code with
length n and dimension k, k ≤ n. A C(n, k) lin-
ear code forms a k-dimensional subspace of the n-
dimensional vector space. A set of k linearly indepen-
dent codewords g1, g2, . . . , gk forms a generator ma-
trix G of the code. For any C(n, k) block code, there
is a dual code C⊥ which is an n− k dimensional vec-
tor subspace with generator matrix H. The matrix
H is called a parity check matrix of C(n, k) and is
an (n− k)× n matrix such that GHT = 0 where T

denotes transpose.

The McEliece cryptosystem employs a code C(n, k)
with generator matrix Gk×n, a scrambling matrix
Sk×k, and a permutation matrix Pn×n. The public key
is pk = SGP while the private key is pr = (S,G, P ).
In this cryptosystem, plaintext bits are scrambled
and the corresponding codeword is permuted. Then
up to t bits are flipped where t is the error correcting
capability of the code.

The encryption algorithm is as follows.

1. For a plaintextm of length k bits, Alice employs
Bob’s public key to encode it as c = mSGP .

2. Alice generates a random error vector e of length
n and Hamming weight no greater than t and
adds it to c to obtain the ciphertext

c′ = c+ e = mSGP + e (1)

The decryption algorithm is as follows.

1. Multiply c′ by the inverse of P

c′P−1 = (mSGP + e)P−1 = mSG+ eP−1 (2)

2. As P is a permutation matrix, P−1 = PT is
also a permutation matrix. Therefore, eP−1 is
a vector with the same Hamming weight as e,
so c′P−1 can be decoded to obtain mS.

3. Multiply mS by S−1 to obtain the plaintext m.

2 Proposed Code-Based Digital
Signature Scheme

The proposed code-based digital signature scheme is
a probabilistic algorithm for key generation, signing,
and verification. The dual matrix A described below
is used in the key generation, signing, and verification
algorithms.

2.1 Dual Matrix A

The proposed algorithm generates a three-tuple public
key based on a matrix that functions as both HT and
H−1 so that HA = In−k and GA = 0. Then

GA = 0 and GHT = 0

so A = HTP ′ and we have

HA = H(HTP ′) = (HHT )P ′ = In−k.

Thus, P ′ = (HHT )−1 so A can be constructed only
if the (n− k)× (n− k) matrix HHT is non-singular.

2.2 Key Generation

The key generation algorithm provides public and
private keys using the generator matrix G of the code
C(n, k) and the dual matrix A which satisfy

GA = 0 and HA = In−k (3)

The following matrices are used by the key generation
algorithm:

1. A k × n generator matrix G
2. An (n− k)× n parity check matrix H
3. An n× (n− k) dual matrix A
4. A k × k scrambling matrix S
5. An n× n permutation matrix P
6. An (n− k)× (n− k) non-singular matrix L

Algorithm 1 Key Generation

1. Given a generator matrix G for C(n, k) with
non-singular HHT and A = HTP ′.
2. Construct P ′ = (HHT )−1.
3. As in the McEliece cryptosystem, use the gener-
ator matrix G, the scrambling matrix S, and the
permutation matrix P to mask G,

pk1 = G
′
= SGP.

4. Use the non-singular matrix L and P to mask H

pk2 = L−1HP

5. Verification of a digital signature requires

pk3 = P−1AHP

6. Construct a parity check matrix H
′
correspond-

ing to G
′
= SGP

Q = H
′T = ((AL)T (P−1)T )T = P−1AL

7. Public and private keys: pk ← (pk1, pk2, pk3)
and pr ← (S−1, P−1, G,Q)

The generator matrix G and parity check matrix
H are masked using a random non-singular scram-
bling matrix S and a random permutation matrix P ,
respectively, and the dual matrix A is masked using
a random non-singular matrix L and P . The verifica-
tion algorithm uses pk3 to validate the digital signa-
tures, and ensure their integrity and authenticity.
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Theorem 1. The public key pk = (pk1, pk2, pk3)
satisfies the following

(1) pk1pk3 = 0
(2) pk2pk3 = pk2
(3) pk3pk3 = pk3

Proof. For the first item, we have

pk1pk3 = SGP (P−1AHP )

= S(GA)HP

= 0.

For the second item, we have

pk2pk3 = (L−1HP )(P−1AHP )

= L−1(HA)HP

= L−1HP

= pk2.

For the third item, we have

pk3pk3 = (P−1AHP )(P−1AHP )

= P−1(AH)(AH)P

= P−1A(HA)HP

= P−1AHP

= pk3.

The following theorem provides the relationship
between the private and public keys.

Theorem 2. The public key pk = (pk1, pk2, pk3) and
private key Q are related as follows:

(1) pk1Q = 0
(2) pk2Q = I
(3) pk3Q = Q

Proof. For the first item, we have

pk1Q = (SGP )(P−1AL)

= S(GA)L

= 0.

For the second item, we have

pk2Q = (L−1HP )(P−1AL)

= L−1(HA)L

= I.

For the third item, we have

pk3Q = (P−1AHP )(P−1AL)

= P−1A(HA)L

= P−1AL

= Q.

Theorem 3. The public key L−1HP has many in-
verses and the probability of constructing a particular
inverse of L−1HP can be made negligible.

Proof. The parity check matrix is a full rank matrix
and is not unique [11]. The inverse of this matrix
has n − k columns, each of which can have 2k dif-
ferent values, so the number of inverse matrices is
2k×(n−k) [11]. The public key L−1HP is a full rank
matrix, so the probability of constructing a particular
inverse of L−1HP is 1

2k×(n−k) which is negligible for
appropriate values of n and k.

2.3 Signing algorithm

The proposed signature scheme uses both keys to sign
a document as follows.

Algorithm 2 Signing

1. Hash document doc, and hash the result to n bits
h(doc)← hash document doc
h(h(doc))← hash h(doc)

2. Let s be the n − k bit vector given by
s← h(doc)(Q)

3. Compute sigSGP ← h(doc) + s(pk2)
4. Decode the codeword c to obtain sig

sigSG← (sigSGP )(P−1)
sigS ← decode sigSG
sig ← (sigS)(S−1)

5. Construct the n − k bit vector d
d← h(h(doc))(Q) + s

6. Output (sig, d) and document doc

Theorem 4. h(doc) + s(pk2) is a valid codeword of
the code C(n, k) with generator matrix G′ = SGP .

Proof. Matrices S and P have full rank as they are
non-singular. Therefore, the rank of SGP is k and
the rank of P−1AL is n− k. Since the row vectors of
SGP and column vectors of P−1AL are orthogonal,
P−1AL generates the nullspace of the code generated
by SGP . Hence, the transpose of P−1AL is a parity
check matrix corresponding to SGP .

For a codeword c ∈ C(n, k) we have c(H ′)T = 0.
The corresponding generator matrix is G′ = SGP
and (H ′)T = P−1AL so

c = sigSGP = h(doc) + s(pk2).
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The vector s is equal to h(doc)(Q)

sigSGP = h(doc) + h(doc)(Q)(pk2),

sigSGP = h(doc) + h(doc)(pk3).

Therefore

c(H ′)T = sigSGP (Q)

= h(doc)(Q) + h(doc)(pk3)(Q)

= h(doc)(Q) + h(doc)(Q)

= 0.

2.4 Verification algorithm

The verification algorithm ensures the authenticity
and integrity of the signature.

Algorithm 3 Verification Algorithm

1. Use the hash function h() to hash the received
document to construct h(doc) and h(h(doc))

a← sigSGP

2. Use the public key and d to obtain v1 = s(pk2)
which is an n-bit vector

v1 ← s(pk2) = h(h(doc))(pk3) + d(pk2)

d = h(h(doc))(Q) + s

d(pk2) = (h(h(doc))(Q) + s)(pk2)

d(pk2) = h(h(doc))(Q)(pk2) + s(pk2)

so

v1 = s(pk2) = h(h(doc))(pk3) + d(pk2) (4)

3. Use the public key (pk3) to obtain v2 = s(pk2)
which is an n-bit vector

v2 ← s(pk2) = h(doc)(pk3)

sigSGP = h(doc) + s(pk2)

s(pk2) = sig(pk1) + h(doc)

s(pk2)(pk3) = sig(pk1)(pk3) + h(doc)(pk3)

so
v2 = s(pk2) = h(doc)(pk3) (5)

4. The integrity condition is satisfied if

v1 = v2

otherwise, verification fails.
5. Use v1 = s(pk2) and h(doc) to compute

c← h(doc) + s(pk2)

6. Verification is successful if a = c, otherwise it
fails.

Changes made by an adversary should be detected
by the verification algorithm. The integrity condition

in step 4 checks the validity of the signature. Note
that v1 does not depend on the signature sig and v2
does not depend on the private key, but the integrity
condition is satisfied if v1 = v2.

2.5 An Example

Consider the following matrix with n = 12 and k = 5:

G =



| 1 0 0 1 0 1 1

| 0 1 0 0 1 0 0

Ik | 0 0 1 1 1 1 1

| 0 1 0 1 0 1 0

| 1 1 0 1 0 0 1


, H =



1 0 0 0 1 |

0 1 0 1 1 |

0 0 1 0 0 |

1 0 1 1 1 | In−k

0 1 1 0 0 |

1 0 1 1 0 |

1 0 1 0 1 |


The dual inverse matrix A, non-singular matrix L,
scrambling matrix S, and permutation matrix P are

An×(n−k) =



0 1 1 0 1 0 1

0 1 0 1 0 1 0

0 0 0 1 0 0 0

1 1 1 0 0 0 0

1 1 1 0 1 1 0

0 0 0 0 0 1 1

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 1 1

0 1 0 0 1 1 0

1 0 0 1 1 1 1

1 0 0 1 0 1 0



,

L =



1 0 1 0 1 1 1

0 0 0 1 0 0 1

1 1 0 0 1 0 0

1 0 1 0 0 0 0

0 1 0 0 1 0 1

0 0 0 1 0 1 1

1 0 0 1 0 0 1


, S =



0 1 0 0 0

1 0 1 1 0

0 1 1 1 0

0 0 1 0 1

1 1 0 0 1


,
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Pn×n =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0



.

Alice generates the signature as follows.

1. Use the hash function h() with the document
doc to obtain

h(doc) = 100110010001,

h(h(doc)) = 110001110111.

2. Construct the (n− k)-bit vector s = h(doc)Q

s = 0101111.

3. Construct a codeword h(doc) + s(pk2) of the
code C(n, k)

c = sigSGP = h(doc) + s(pk2)

= 100110010001 + (0101111)(pk2)

= 100110010001 + 000110110010

= 100000100011.

4. Decode the codeword to obtain

sig = 01010.

5. Use Q and s to obtain

d = h(h(doc))Q+ s

= (110001110111)(P−1AL) + 0010111

= 1000110 + 0010111

= 1101001.

6. Output (sig, d) along with the document doc.

Bob verifies the signature as follows.

1. Use the hash function h() and the received doc-
ument to obtain

h(doc) = 100110010001,

h(h(doc)) = 110001110111,

a = sigSGP = (0000110)(SGP ) = 100000100011.

2. Use Alice’s public key and d to compute

v1 = h(h(doc))(pk3) + d(pk2)

= 110001110111(pk3) + 1101001(pk2)

= 110111000110 + 110001110100

= 000110110010.

3. Use Alice’s public key to compute v2 =
s(L−1HP )

v2 = h(doc)(pk3)

= 100110010001(pk3)

= 000110110010.

4. Check the integrity condition v1 = v2. If it is
met, continue, otherwise verification is failed.

5. Use v1 = s(pk2) and h(doc) to compute

c = h(doc) + s(pk2)

= 100110010001 + 000110110010

= 10000010011.

6. Verification is successful as a = c.

3 Performance and Security Analysis

The size of the public and private keys in the McEliece
cryptosystem is (n + k)2 [11]. The size of pk1, pk2,
and the private keys in the proposed cryptosystem is
3n2 + k2 [12]. Including pk3 gives the total key size
4n2 + k2. Table 1 shows that for n = 1024 and k =
524, the total key size for the McEliece cryptosystem
is 292.5 kB, and with n = 256 and k = 128 [12] the
total key size for the proposed cryptosystem is 34.0
kB.

The size of the signature and the speed of the
signing process are the main factors that influence
the choice of a digital signature algorithm. Speed is
important for applications such as online banking,
e-commerce, and blockchains (Bitcoin, Ethereum).
On average, the CFS code-based signature schemes
require t! executions to obtain a valid signature [13],
so the speed is proportional to the error correcting
capability of the code. Table 2 compares the success
rate and signature size of the proposed and lattice-
based schemes. This shows that the proposed scheme
has the smallest signature size and the highest success
rate.

Adversaries use attacks on algorithms to gain ac-
cess to documents and steal information [17]. To pre-
vent attacks, the proposed algorithm masks the gen-
erator matrix using the permutation and scrambling
matrices. Verification of a forged document signed
by an adversary should fail [18] and the probability

ISeCure



106 PQ Digital Signature Based on the McEliece Cryptosystems with Dual Inverse Matrix — Haidary et al.

Table 1. Key size comparison (kB)

Scheme McEliece Proposed

Public Key 65.5 16.0

Private Key 227.0 18.0

Public and Private Keys 292.5 34.0

Table 2. Signature size comparison

Scheme Security (bits) Success rate Signature size (kB)

Bliss-IV [14] 192 0.19 6656

qTeslaIII [15][16] 256 1 2848

proposed n = 256 128 1 32

proposed n = 512 256 1 64

of constructing the private key from the public key
should be negligible.

Consider a structural attack to construct the pri-
vate key from the public key. The challenger provides
an adversary with access to input any selected docu-
ment and obtain a valid signature. Then the adver-
sary uses their private key Qadv to sign a document
and produce (sig, d) to be verified by the challenger.
The challenger uses the verification algorithm and at
step 4 checks the integrity condition v1 = v2. The
algorithm steps give

d = h(h(doc))(Q) + s,

d(pk2) = (h(h(doc))(Q) + s)(pk2),

d(pk2) = h(h(doc))(Q)(pk2) + s(pk2).

Therefore, (Q)(pk2) = (pk3) so

v1 ← s(pk2) = h(h(doc))(pk3) + d(pk2) (6)

and hence v1 = s(pk) does not depend on the signa-
ture sig. Further

sigSGP = h(doc) + s(pk2),

s(pk2) = sig(pk1) + h(doc),

s(pk2)(pk3) = sig(pk1)(pk3) + h(doc)(pk3).

From Theorem 1, (pk1)(pk3) = 0 and (pk2)(pk3) =
pk2, so

v2 ← s(pk2) = h(doc)(pk3). (7)

Thus, v2 = s(pk2) does not depend on the adversary
private key Qadv. The condition v1 = v2 gives

h(doc)(pk3) = h(h(doc))(pk3) + d(pk2). (8)

The left side can be expressed as (h(doc)(P−1AHP ))
and is independent of Qadv, while d on the right side
is constructed using Qadv during the signing process.

We have

d = h(h(doc))Qadv + h(doc)Qadv,

d(pk2) = h(h(doc))(Qadv)(pk2) + h(doc)(Qadv)(pk2),

d(pk2) = (h(h(doc)) + h(doc))(Qadv)(pk2), (9)

and (8) and (9) give

pk3 = Qadvpk2,

P−1AHP = Qadv(L
−1HP ).

Based on Theorem 2, this is satisfied if and only if
Qadv = Q.

Consider that an adversary selects (L−1H ′′P )−1

as their private key. Then

(Qadv)(pk2) = (L−1H ′′P )−1(L−1HP )

= (H ′′P )−1(L)(L−1)(HP )

= P−1(H ′′)−1HP

so if (H ′′)−1 = A, Qadvpk2 is equal to pk3 =
P−1AHP and the signed document can be verified
successfully, i.e. the adversary has succeeded in
forging a signature.

An algorithm is considered secure if the probability
of a successful attack is negligible [19, 20]. The parity
check matrix H has full rank and dimensions (n−k)×
n, so H ′′ is also full rank with the same dimensions.
From Theorem 3, the probability of (L−1HP )−1 =
(L−1H ′′P )−1 is 2−k×(n−k). Therefore, the probability
of constructing the private key from the public key is
negligible for appropriate values of n and k. Hence,
the proposed digital signature algorithm is secure
against structural attacks.

4 Conclusion

The CFS digital signature scheme has drawbacks
which limit its use in practical applications. For ex-
ample, the ciphertexts only cover part of the vector
space so on average t! executions are required to ob-
tain a valid signature. A code-based digital signature
scheme was proposed which overcomes this problem.
Further, it includes a verification process to ensure
the integrity and authenticity of the signatures. The
proposed signature algorithm is safe against struc-
tural attacks as the probability of constructing the
private key from the public key is negligible. More-
over, it is faster than existing code-based signature
algorithms and has a small key size.
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