Document Type : Research Article

Authors

1 Department of Computer Science, Faculty of Information and Communication Technology, University Tunku Abdul Rahman (UTAR), Perak, Malaysia

2 Department of Computer Science, University of Sindh, Jamshoro, Pakistan

3 Faculty of Engineering and Green Technology, University Tunku Abdul Rahman (UTAR), Perak, Malaysia

Abstract

With the advancement of ICTs, the fifth generation has developed into an emergent communication platform that supports high speed, low latency, and excellent connectivity to numerous devices with modern radio technology, service-oriented design, and cloud infrastructure. The recent developments in the fifth Generation and existing proposed plans are centred on the security model of this study, with authentication, availability, confidentiality, integrity, visibility, and centralized security policy. However, initiating innovative technologies and enhanced aspects in the 5th Generation communication raises new requirements and has given various security challenges. 5G-based applications face security risks because of using modern technology. This paper presents a study of security attacks and the security risks faced by 5G intelligent applications. This research article also investigates the three main 5G usage scenarios (i.e., eMBB, uRLLC, and mMTC). This research recommends the steps to be taken to reduce the security risks of 5G usage scenarios & intelligent applications.

Keywords

[1] M. Taheribakhsh, A. H. Jafari, M. M. Peiro, and N. Kazemifard. 5G Implementation: Major Issues and Challenges. In 2020 25th International Computer Conference, Computer Society of Iran, CSICC 2020, pages 1–6, 2020. doi:10.1109/CSICC49403.2020.9050110.
[2] S. Sicari, A. Rizzardi, and A. Coen-Porisini. 5G In the internet of things era: An overview on security and privacy challenges. In Computer Networks, vol. 179, papes 1–19, 2020. doi:10.1016/j.comnet.2020.107345.
[3] D. Fang, Y. Qian, and R. Q. Hu. Security for 5G Mobile Wireless Networks. In IEEE Access, vol. 6, pages 4850–4874, 2017.
doi:10.1109/ACCESS.2017.2779146.
[4] S. Adhikari. Intelligent Cyber Defense in 5G Augmented Aviation Cybersecurity Framework. In AIAA Scitech 2021 Forum, page 0661, 2021. doi:10.2514/6.2021-0661.
[5] Q. Qiu, S. Liu, S. Xu, and S. Yu. Study on Security and Privacy in 5G-Enabled Applications. In Wirel Commun Mob Comput, vol.2020, pages 1–15, 2020. doi: 10.1155/2020/8856683.
[6] I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, and A. Gurtov. Overview of 5G Security Challenges and Solutions. In IEEE Communications Standards Magazine, vol.2, no.1, pages 36–43, 2018. doi:10.1109/MCOMSTD.2018.1700063.
[7] C. Benza¨ıd, and T. Taleb. AI for beyond 5G Networks: A Cyber-Security Defense or Offense Enabler?. In IEEE Netw, vol. 34, no. 6, pages 140–147, 2020. doi:10.1109/MNET.011.2000088.
[8] R. Ahmed, and M. A. Matin. Towards 6G wireless networks-challenges and potential technologies. In Journal of Electrical Engineering, vol. 71, no. 4, pages 290–297, 2020. doi:10.2478/jee-2020-0040.
[9] M. Agiwal, A. Roy, and N. Saxena. Next generation 5G wireless networks: A comprehensive survey. In IEEE Communications Surveys and Tutorials, vol. 18, no. 3. Institute of Electrical and Electronics Engineers Inc., pages 1617–1655, 2016. doi:10.1109/COMST.2016.2532458.
[10] Y. E. Kim, Y. S. Kim, and H. Kim. Effective Feature Selection Methods to Detect IoT DDoS Attack in 5G Core Network. In Sensors, vol. 22, no. 10, pages 1–21, 2022. doi:10.3390/s22103819.
[11] S. Khan Tayyaba, and M. A. Shah. 5G cellular network integration with SDN: Challenges, issues and beyond. In Proceedings of 2017 International Conference on Communication, Computing and Digital Systems, pages 48–53, 2017. doi:10.1109/C-CODE.2017.7918900.
[12] M. Wazid, A. K. Das, S. Shetty, P. Gope, and J. J. P. C. Rodrigues. Security in 5G-Enabled Internet of Things Communica-
tion: Issues, Challenges and Future Research Roadmap. In IEEE Access, pages 4466–4489, 2020. doi:10.1109/ACCESS.2020.3047895.
[13] D. Soldani. 5G and the Future of Security in ICT. In 2019 29th International Telecommunication Networks and Applications Conference (ITNAC), pages 1–8, 2019.
[14] S. Kwon, S. Park, H. J. Cho, Y. Park, D. Kim, and K. Yim. Towards 5G-based IoT security analysis against Vo5G eavesdropping. In Computing, vol. 103, no. 3, pages 425–447, 2021. doi:10.1007/s00607-020-00855-0.
[15] R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage. A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions. In IEEE Communications Surveys and Tutorials, vol. 22, no. 1. Institute of Electrical and Electronics Engineers Inc., pages 196–248, 2020. doi:10.1109/COMST.2019.2933899.
[16] A. Gupta, and R. K. Jha. A Survey of 5G Network: Architecture and Emerging Technologies. In IEEE Access, vol. 3. Institute of Electrical and Electronics Engineers Inc., pages 1206–1232, 2015. doi:10.1109/ACCESS.2015.2461602.
[17] I. Ahmad, S. Shahabuddin, T. Kumar, J. Ok-wuibe, A. Gurtov, and M. Ylianttila. Security for 5G and beyond. In IEEE Communications Surveys and Tutorials, vol. 21, no. 4, pages 3682–3722, 2019. doi:10.1109/COMST.2019.2916180.
[18] A. Gohil, H. Modi, and S. K. Patel. 5G technology of mobile communication: A survey. In 2013 International Conference on Intelligent Systems and Signal Processing (ISSP 2013), pages 288–292, 2013. doi:10.1109/ISSP.2013.6526920.
[19] N. Panwar, S. Sharma, and A. K. Singh. A survey on 5G: The next generation of mobile communication. In Physical Communication, vol. 18, pages 64–84, 2016. doi:10.1016/j.phycom.2015.10.006.
[20] M. Jaber, M. A. Imran, R. Tafazolli, and A.Tukmanov. 5G Backhaul Challenges and Emerging Research Directions: A Survey. In IEEE Access, vol. 4. Institute of Electrical and Electronics Engineers Inc., pages 1743–1766, 2016.
doi:10.1109/ACCESS.2016.2556011.
[21] R. N. Mitra, and D. P. Agrawal. 5G mobile technology: A survey. In ICT Express, vol. 1, no. 3, pages 132–137, 2015.
doi:10.1016/j.icte.2016.01.003.
[22] I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, and A. Gurtov. 5G security: Analysis of threats and solutions. In 2017 IEEE Conference on Standards for Communications and Networking (CSCN), pages 193–199, 2017.
doi:10.1109/CSCN.2017.8088621.
[23] M. A. Ferrag, L. Maglaras, A. Argyriou, D. Kosmanos, and H. Janicke. Security for 4G and 5G cellular networks: A survey of existing authentication and privacy-preserving schemes. In Journal of Network and Computer Applications, vol. 101. Academic Press, pages 55–82, 2018. doi:10.1016/j.jnca.2017.10.017.
[24] P. Gandotra, and R. K. Jha. A survey on green communication and security challenges in 5G wireless communication networks. Journal of Network and Computer Applications, vol. 96. Academic Press, pages 39–61, 2017. doi:10.1016/j.jnca.2017.07.002.
[25] J. G. Andrews et al.. What will 5G be?. In IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pages 1065–1082, 2014. doi:10.1109/JSAC.2014.2328098.
[26] J. Qiao, X. Shen, J. Mark, Q. Shen, Y. He, and L. Lei. Enabling device-to-device communications in millimeter-wave 5G cellular networks. In IEEE Communications Magazine, vol. 53, no. 1, pages 209–215, 2015. doi:10.1109/MCOM.2015.7010536.
[27] S. Gupta, B. L. Parne, and N. S. Chaudhari. Security Vulnerabilities in Handover Authentication Mechanism of 5G Network. In ICSCCC 2018 - 1st International Conference on Secure Cyber Computing and Communications, pages 369–374, 2018. doi:10.1109/ICSCCC.2018.8703355.
[28] T. Q. Thanh, S. Covaci, and T. Magedanz. VISECO: An Annotated Security Management Framework for 5G. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11005 LNCS, pages 251–269, 2019. doi:10.1007/978-3-030-03101-5 21.
[29] H. -C. Chen, and S. -S. Kuo. Active Detecting DDoS Attack Approach Based on Entropy Measurement for the Next Generation Instant Messaging App on Smartphones. In Intelligent Automation & Soft Computing, vol. 25, no. 1, pages
217–228, 2019.
[30] C. R. Kumar, and V. E. Jayanthi. A Novel Fuzzy Rough Sets Theory Based CF Recommendation System, 2019.
[31] B. Xiong, K. Yang, J. Zhao, and K. Li. Robust dynamic network traffic partitioning against malicious attacks. In Journal of Network and Computer Applications, vol. 87, pages 20–31, 2017. doi:10.1016/j.jnca.2016.04.013.
[32] N. Wang, P. Wang, A. Alipour-Fanid, L.Jiao, and K. Zeng. Physical-Layer Security of 5G Wireless Networks for IoT: Chal-
lenges and Opportunities. In IEEE Internet Things J, vol. 6, no. 5, pages 8169–8181, 2019. doi:10.1109/JIOT.2019.2927379.
[33] M. Lichtman, R. Rao, V. Marojevic, J. Reed, and R. P. Jover. 5G NR jamming, spoofing, and sniffing: Threat assessment and mitigation. In 2018 IEEE International Conference on Communications Workshops, ICC Workshops 2018 - Proceedings,pages 1–6, 2018. doi:10.1109/ICCW.2018.8403769.
[34] I. Mistry, S. Tanwar, S. Tyagi, and N. Kumar. Blockchain for 5G-enabled IoT for industrial automation: A systematic review,
solutions, and challenges. In Mech Syst Signal Process, vol. 135, pages 1–21, 2020. doi:10.1016/j.ymssp.2019.106382.
[35] A. J. Akinyoade, and O. T. Eluwole. The internet of things: Definition, tactile-oriented vision, challenges and future research directions. In Advances in Intelligent Systems and Computing, vol. 797, Springer Verlag, pages 639–653, 2019.
doi:10.1007/978-981-13-1165-9 59.
[36] J. H. Park et al.. A Comprehensive Survey on Core Technologies and Services for 5G Security: Taxonomies, Issues, and Solutions. In Humancentric Computing and Information Sciences, vol.11, 2021. doi:10.22967/HCIS.2021.11.003.
[37] . A. Dutta, and E. Hammad. 5G Security Challenges and Opportunities: A System Approach; 5G Security Challenges and Opportunities: A System Approach, 2020.
[38] A. Chonka, and J. Abawajy. Detecting and mitigating HX-DoS attacks against cloud web services. In Proceedings of the 2012 15th International Conference on Network-Based Information Systems, NBIS 2012, pages 429–434, 2012.
doi:10.1109/NBiS.2012.146.
[39] M. Wazid, A. K. Das, J. J. P. C. Rodrigues, S.Shetty, and Y. Park. IoMT Malware Detection Approaches: Analysis and Research Challenges. In IEEE Access, vol. 7, pages 182459–182476, 2019. doi:10.1109/ACCESS.2019.2960412.
[40] S. Xu, Y. Qian, and R. Q. Hu. Privacy-Preserving Data Preprocessing for Fog Computing in 5G Network Security. In
2018 IEEE Global Communications Conference (GLOBECOM), pages 1–6, 2018. doi:10.1109/GLOCOM.2018.8647912.
[41] B. P. Kumar, G. Rampalli, P. Kamakshi, and T. Senthil Murugan. DDoS Botnet Attack Detection in IoT Devices. pages 21–27, 2023. doi:10.1007/978-981-16-9967-2 3.
[42] W. Xiang, K. Zheng, and X. S. Shen. 5G Mobile Communications, 2017. doi:10.1007/978-3-319-34208-5.
[43] C. R. Kumar, and V. E. Jayanthi. A Novel Fuzzy Rough Sets Theory Based CF Recommendation System, 2019.
[44] X. Shen. Device-to-device communication in 5G cellular networks. In IEEE Network, vol.29, no. 2. Institute of Electrical and Electronics Engineers Inc., pages 2–3, 2015. doi: 10.1109/MNET.2015.7064895.
[45] M. A. Siddiqi, H. Yu, and J. Joung. 5G ultra-reliable low-latency communication implementation challenges and operational issues with IoT devices. In Electronics (Switzerland), vol. 8, no. 9. MDPI AG, pages 1–18, 2019. doi:10.3390/electronics8090981.
[46] M. El-Moghazi, and J. Whalley. IMT-2020 Standardization: Lessons from 5G and Future Perspectives for 6G, 2021. Available: https://ssrn.com/abstract=3901148.
[47] B. B. Haile, E. Mutafungwa, and J. H¨am¨al¨ainen. A data-driven multiobjective optimization framework for hyperdense 5G network planning. In IEEE Access, vol. 8, pages 169423–169443, 2020. doi:10.1109/ACCESS.2020.3023452.
[48] D. Wang, and P. Wang. Two Birds with One Stone: Two-Factor Authentication with Security beyond Conventional Bound. In IEEE Trans Dependable Secure Comput, vol. 15, no. 4, pages 708–722, 2018. doi:10.1109/TDSC.2016.2605087.
[49] D. Wang, X. Zhang, Z. Zhang, and P. Wang. Understanding security failures of multi-factor authentication schemes for multi-server environments. In Comput Secur, vol. 88, pages 1–8, 2020. doi:10.1016/j.cose.2019.101619.
[50] T. Yoshizawa, S. B. M. Baskaran, and A. Kunz. Overview of 5G URLLC System and Security Aspects in 3GPP. In 2019 IEEE
Conference on Standards for Communications and Networking (CSCN), pages 1–5, 2019. doi:10.1109/CSCN.2019.8931376.
[51] M. A. Abu-Rgheff. 5G enabling technologies: Narrowband Internet of Things and smart cities, 2019.
[52] J. Salo, and M. Liyanage. Regulatory impact on 5G security and privacy. In A Comprehensive Guide to 5G Security, wiley, pages 399–419, 2018. doi:10.1002/9781119293071.ch17.
[53] N. Saxena, A. Roy, and H. Kim. Efficient 5G Small Cell Planning With eMBMS for Optimal Demand Response in Smart Grids. In IEEE Trans Industr Inform, vol. 13, no. 3, pages 1471–1481, 2017. doi:10.1109/TII.2017.2681105.
[54] R. Sachan, N. Saxena, and A. Roy. An efficient hybrid scheduling scheme for impatience user in eMBMS over LTE. In 2013
International Conference on Computer Communication and Informatics, pages 1–5, 2013. doi:10.1109/ICCCI.2013.6466266.
[55] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani. Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. In IEEE Communications Surveys
and Tutorials, vol. 21, no. 3, pages 2702–2733, 2019. doi:10.1109/COMST.2019.2910750.