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1 Introduction

To enhance the accuracy of learning models, it becomes imperative to train
them on more extensive datasets. Unfortunately, access to such data is often
restricted because data providers are hesitant to share their data due to privacy
concerns. Hence, it is critical to develop obfuscation techniques that empower
data providers to transform their datasets into new omnes that ensure the
desired level of privacy. In this paper, we present an approach where data
providers utilize a neural network based on the autoencoder architecture to
safeguard the sensitive components of their data while preserving the utility of
the remaining parts. More specifically, within the autoencoder framework and
after the encoding process, a classifier is used to extract the private feature
from the dataset. This feature is then decorrelated from the other remaining
features and subsequently subjected to noise. The proposed method is flexible,
allowing data providers to adjust their desired level of privacy by changing the
noise level. Additionally, our approach demonstrates superior performance in
achieving the desired trade-off between utility and privacy compared to similar
methods, all while maintaining a simpler structure.

(© 2024 ISC. All rights reserved.

hospitals are careful about patient privacy and do
not want to share the actual patient data. This leads

ecent progress in deep neural networks has been

fueled by having a lot of data and powerful com-
puters. However, sometimes, access to specific data
is restricted, which can slow down progress. Specifi-
cally, some data providers are cautious about sharing
sensitive information due to privacy concerns. For ex-
ample, think about a group of medical researchers
who want to create a predictive model for identify-
ing early signs of a particular disease using patient
health records from different hospitals. However, the
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to the need to find ways to protect patient privacy
while still using their data to create a useful model.
As another example, financial institutions with ex-
tensive transaction records are often constrained by
regulations that limit their ability to share customer
information. This balance between harnessing the po-
tential of big data and safeguarding privacy rights
presents a complex and ongoing challenge in the era
of machine learning, necessitating the exploration of
ways to protect users’ privacy while still utilizing their
data to create valuable models.

Privacy concerns can be tackled through two pri-
mary types of learning methods: federated learning
and centralized learning. Federated learning, gaining
notable attention, is a decentralized approach that al-
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lows multiple devices to collaboratively train a shared
model. It addresses privacy concerns by keeping sen-
sitive data localized; however, challenges related to
communication efficiency and model convergence may
arise [1-3]. It is noteworthy that while federated learn-
ing ensures that raw data is not directly shared with
users, the model may still retain information from the
dataset. Additionally, federated learning remains sus-
ceptible to both membership inference and poisoning
attacks [4-7]. On the contrary, centralized learning fol-
lows a more conventional approach where data from
various sources is gathered and stored in a central
server for model training. Despite concerns regarding
privacy and data security, centralized learning offers
several benefits, including improved computational
efficiency, enhanced model accuracy, and simplified
model deployment. This paper will specifically delve
into investigating the privacy issue within the context
of centralized learning.

Let us consider a scenario where a utility provider
requests datasets from various data providers. In cen-
tralized learning, the key concept for achieving pri-
vacy is for data providers to obfuscate their data in a
manner that ensures the desired level of privacy from
both the utility provider and potential adversaries. Si-
multaneously, the utility provider should have the ca-
pability to efficiently use the distorted data for train-
ing the learning model. The resulting model can then
be employed by the utility provider to offer services to
data providers or other users. Figure 1 illustrates the
schematic of the obfuscation process. The primary ob-
jective of different obfuscation techniques is to strike
a balance between data utility and privacy considera-
tions. Numerous algorithms have been proposed in
the literature to obfuscate datasets. The primary tech-
niques introduced to safeguard privacy encompass
k-anonymity [8], ¢-diversity [9], and t-closeness [10],
tailored for smaller datasets. In addition, approaches
based on Homomorphic Encryption (HE) [11, 12] and
Secure Multi-party Computation (SMPC) [13, 14]
are hindered by substantial computational and com-
munication overheads, making them less common in
practical use. Another cluster of privacy-preserving
algorithms hinges on differential privacy, a mathemat-
ical tool that guarantees data privacy by introducing
suitable noise [15-17]. However, differential privacy
encounters challenges in higher dimensions due to its
potential time consumption and the need for signifi-
cant noise addition, which may subsequently distort
the utility of the dataset.

Neural network-based obfuscators have emerged as
an alternative approach that has gained significant at-
tention, especially with the increasing availability of
data in recent years [18-26]. These approaches lever-
age various machine learning techniques, including au-
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Figure 1. Data providers (DPs) aim to find a balance between
privacy and utility by altering their data before sharing it with
the utility provider.

toencoders, generative adversarial networks (GANs),
and variational autoencoders, to accomplish their ob-
jectives. Below, we provide more details on several
noteworthy works within this field.

Huang et al. [18, 19] employ GANs and formulate a
minimax game between the privatizer and the adver-
sary to conceal a specific feature. Li et al. [20] utilize
mutual information-based training to learn a feature
extractor that hides private features while preserv-
ing the utility of the remaining information. However,
the output of their method is in a censored feature
vector format, which is incompatible with the origi-
nal data format and unsuitable for data publishing
or pre-trained models like DenseNet. In [21], Singh
et al. combine variational autoencoders and differen-
tial privacy techniques. They first reduce the data
dimension, separate sensitive and non-sensitive data
using two classifiers, and then perturb the covari-
ance matrix of the sensitive data to establish differ-
ential privacy. However, utilizing differential privacy
methods typically requires more training data and
is time-consuming [27]. Osia et al. propose a feature
extraction method in [23] specifically designed for
implementation on mobile devices using a Siamese ar-
chitecture. However, this method also generates data
that does not adhere to the original dataset format.
In [24], Nguyen et al. employ an autoencoder to re-
duce image dimensions and then utilize a GAN-based
structure to make the distribution of encoder out-
puts approach a Gaussian distribution. Additionally,
the classifier providing the desired feature offers feed-
back to the obfuscator. Mandal et al. [25] propose a
private learning algorithm based on the uncertainty
autoencoder.

In this paper, we propose that data providers pos-
sess a specific feature in their datasets that neces-
sitates protection against unauthorized access. To
achieve this, each data provider employs an obfusca-
tion procedure, depicted in Figure 1, to generate a
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dataset that ensures privacy for the specific feature
while preserving utility for other features. The obfus-
cator, which is a neural network, can be trained by
either the utility provider or another certified entity
and then distributed to the data providers for imple-
mentation. The fundamental concept underlying the
obfuscation framework is illustrated in Figure 2. Ini-
tially, we employ data compression with two primary
objectives:

(1) Reducing the complexity of the intermediate
networks, thereby decreasing the number of pa-
rameters and enabling effective operation with
smaller data volumes.

(2) Generating data instances with reduced corre-
lation.

By incorporating a classifier into the intermediate
network framework, we extract the desired private
feature for obfuscation. By reducing correlation, the
compression process guarantees that obfuscating the
output of the classifier has minimal influence on other
features. Furthermore, we employ an additional neu-
ral network to ensure there is no correlation between
the private feature and other information. The com-
pression structure utilized is an autoencoder. Once
we have ensured that the private feature is effectively
uncorrelated with other information in the interme-
diate layers, we proceed to add suitable noise to the
private feature to conceal it. The proposed scheme
demonstrates superior performance compared to sim-
ilar schemes while maintaining a simpler structure
without relying on GANs or other feedback-based
structures, which guarantees stability [28-30].

The remainder of the paper is organized as fol-
lows: Section 2 describes the system model, Section 3
provides details of the proposed methodology, Sec-
tion 4 presents simulation results, Section 5 explores
some additional privacy considerations, and finally,
Section 6 concludes the paper.

2 System Model

The dataset D comprises n samples from the instance
space Z = X' x ), where X represents the input space
and ) denotes the output space. In this context, the
vector Y € ) encompasses various features, which
are categorized as private and non-private, denoted
as’Y = (Yp, Ynp). To illustrate, this paper considers
a collection of face images as X, with the gender
feature classified as private, while other features are
considered non-private.

The data provider’s objective is to share the data
with the utility provider for collaborative learning.
However, the data provider also places importance
on maintaining the confidentiality of certain features.
To accomplish this, the data provider converts X

into X', to preserve the privacy of one (or several)
specific features. The transformation function from
X to X’ is referred to as an obfuscator, and the level
of ambiguity it introduces to the dataset determines
the trade-off between utility and privacy.

To develop our obfuscator, we adopt a two-step ap-
proach. Firstly, we decorrelate private and non-private
features. Then, we introduce noise exclusively to the
private features while preserving the non-private in-
formation intact. Figure 3 illustrates our implemen-
tation using an autoencoder, which serves to reduce
the data’s dimensionality. This compression process
yields several advantages:

(1) Enhanced Privacy: The dataset’s privacy is
enhanced through the dimensionality reduc-
tion achieved by the autoencoder, although this
comes at the cost of reducing its utility.

(2) Decreased Correlation: The encoder’s compres-
sion eliminates redundancy within the data,
leading to a nearly uncorrelated output. Conse-
quently, modifications made to the private fea-
tures have minimal impact on the non-private
information.

(3) Streamlined Complexity: By reducing the di-
mensionality through the autoencoder, the
structure of intermediate networks is simplified,
leading to improved efficiency.

Our obfuscation technique employs an autoencoder,
consisting of an encoder E, and a decoder Dg. The
coded data, denoted as V, is obtained by applying the
encoder to the input data X, i.e., V = E,(X). Both
the encoder and decoder are Deep Neural Networks
(DNNs) with parameter sets « and f3, respectively.
Next, we generate two sets of data based on the
reduced-dimensional and meaningless coded data V:

(1) Cy with parameter 6: This DNN acts as a classi-
fier, taking the meaningless data V as input and
producing meaningful features Wp = Cy(V).
These features represent the private informa-
tion we aim to protect.

(2) Ry with parameter ¢: The output of this DNN
contains information from V that is appropri-
ately uncorrelated with Wp. We denote this
portion of information as Wyp, which we want
to retain as useful as possible.

In the subsequent step, we introduce noise to Wp
to obtain the modified data W§. Combining Wj
and Wyp yields V’. Finally, the decoder converts V'
back to X’. To accomplish this, we need to design
appropriate parameters «, 3, ¢, 6, and choose a suit-
able method for introducing noise. To balance the
trade-off between privacy and utility, we consider the

following properties:
@
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Figure 2. Through the combination of a compressor and classifier, we ensure the separation of the private feature from other
information while inducing uncorrelation between them. As a result, the private feature becomes noisy while having a minimal

impact on other features.
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Figure 3. The obfuscator comprises an autoencoder that intelligently separates the private and non-private features in conjunction
with a classifier. The private features are then appropriately combined with noise, while the non-private features remain unchanged.
Subsequently, the decoder reconstructs the obfuscated dataset using all the manipulated features.

(1) Maintain Utility: We aim to preserve the
utility of the original dataset by minimizing a
loss function

Loc(o, 8.6,60) =E[(X.X)]. (1)

Here, the expectation is taken over the distri-
bution of X. Moreover, excluding the noise in-
jection procedure, X’ can be expressed as

X' =Dy(Co(V) [ Ro(V)).  (2)

Private feature extraction: We seek to ef-
fectively separate the private feature from the
remaining information. To achieve this, the clas-
sifier Cy should accurately extract the private
features, indicated by Wp. This property can
be quantified by a loss function

Le(a,0) = ]EV (WP,YP)}a (3)

where the expectation is taken over the joint
distribution of X and Y.

Ensuring Decorrelation: To ensure minimal
correlation between the private feature Wp and
non-private information Wyp, we incorporate
a decorrelation loss function denoted as

Lcor (v, ¢) = E[f (Wp, Wyp) },

1S¢0ured)

(4)

where the expectation is taken over the distri-
bution of X.

The proposed network design consists of three
stages. In the initial step, assuming no noise intro-
duction and utilizing the mentioned properties, we
determine the network parameters as

a*76*7¢*’9*
= arg mine Loe(e, B,6,0) + Le(a, 6).

5
nin (5)

Next, by freezing Ea and Cy, we ensure decorrelation
while updating the parameters § and ¢ as

B, 0™ = arg min Lae(; B, ¢,0) + Lacor(at, ¢). (6)

Subsequently, to maintain the confidentiality of the
private features in the final dataset, we introduce
some noise to them.

To assess the effectiveness of our proposed scheme,
we subject the output obfuscated dataset to evalua-
tion by both the adversary and the utility provider,
each with specific characteristics.

Adversary: We consider the adversary as a DNN
whose objective is to extract a private feature from
the obfuscated dataset. Specifically, we investigate an
adversary described in [31], where the adversary pos-
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sesses an obfuscation model and utilizes it to create
an obfuscated dataset by modifying a dataset that
resembles the original one. The adversary has access
to both a dummy obfuscated dataset and the pre-
cise value of the feature it intends to infer. Following
that, it trains its network using supervised learning
techniques.

Utility Provider: The utility provider is a DNN
classifier trained on the obfuscated dataset, enabling
it to infer one or more features. The purpose of this
network is to be made available to other users, allow-
ing them to make inferences from their unobfuscated
data.

3 Technical Details

We selected the CelebA dataset as our dataset of
choice [32]. CelebA comprises a comprehensive collec-
tion of facial images, consisting of 202,599 face images
from 10,177 individuals. Each image is associated
with 40 binary feature labels, including attributes
such as gender, age, and smile. For our specific pur-
pose, we utilized 162,752 samples from the CelebA
dataset for training, while the remaining samples were
designated for testing and validation.

In our study, we considered the gender feature as
private and focused on preserving the dataset’s utility
with respect to other features. Hence, we evaluated
the dataset’s utility specifically in relation to the
smiling feature.

Our DNN structures were inspired by the VGG-16
network [33]. The autoencoder components, denoted
as E, and Dg, consist of four 2D-convolutional layers,
three batch normalization layers, and one fully con-
nected layer. E,, takes images of size 64 x 64 x 3 as
input and produces 1024 features as output, resulting
in a feature vector V of size 1024. The decoder, Dg,
converts a manipulated feature vector of size 1024
back into a 64 x 64 x 3 image.

The autoencoder incorporates two fully-connected
networks, Cy and Ry, in its middle layers. Cy is a four-
layer fully-connected network that maps the input
of size 1024 to two outputs representing the private
feature. On the other hand, Ry is a three-layer fully-
connected network that maps the input of size 1024
to 1022 outputs, representing the remaining uncorre-
lated features with the private feature. The DNNs’
structures are described in more detail in Table 1.

Regarding the loss functions utilized in our ap-
proach, we employ the mean square error (MSE) for
L. (autoencoder loss), the negative log-likelihood
for Lc (classifier loss), and cross-covariance to ensure
the uncorrelation between the outputs of Ry and the
outputs of the classifier. More specifically, we have

N
1 2
Loo = ¥ Z (X; - X5)", (7)
j=1
M
LC = — Yp,j lOg (WPJ‘)
j=1

+(1—-Yp;)log(l—Wp,), (8)
deor =

1 E , , T
B Z (WI(DJ) - NP) ‘ (Vvl(\n2 - NNP) -9
i=1 .

Here, the dimensions of the vectors X and Yp are
represented by N and M, respectively. The operators
()7 and ||-||f refer to the transpose and Frobenius
norm, respectively. The cross-covariance is computed
over a batch of size B using

B
1 .
e =5 > Wy, (10)
j=1
1o (i
Hne = 5 ZWI(\@- (11)
j=1

In the paper, M is set to 2, but extending it to
accommodate more private features is straightforward
by considering a classifier with additional outputs. It
is important to mention that both the utility provider
and the adversary are trained using the negative log-
likelihood loss function.

The training phase of the framework is outlined
in Algorithm 1. In the first step, we update the pa-
rameters of the DNNs for n, epochs using randomly
selected mini-batches of size B and the loss function
described in (5). We set B = 64 and stopped the
first step after n. = 50 epochs, based on the trend
of validation loss. In the second step, for n/, epochs,
we update the parameters of Ry and Dg using mini-
batches of size B = 64 and the loss function in (6),
while E, and Cy remain fixed. Since the autoencoder
and decorrelation losses are unbalanced, we consider
a weighted combination of them to strike a balance
that allows each loss function to contribute effectively
to the overall training. Based on the values of each
loss in a test iteration, we chose loss weights w,. =
0.99999 and wycor = 107°. We terminated the second
step after n,, = 37 iterations, where the decorrelation
loss no longer decreased significantly. The subsequent
steps followed a similar procedure as the second step
but with different loss weights. In each step, training
was stopped when the decorrelation loss approached
its minimum value while keeping the autoencoder
loss below an acceptable threshold. We conducted
training in multiple steps, and the best results were
achieved after the third step. In the third step, we
selected loss weights w,, = 0.9999 and w)_,, = 107%,
and training was stopped after 23 iterations. It is im-
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Table 1. DNNs architecture details for image datasets

Component Num Layer Output Size Specs Activation Function
Input Data Image Samples 3 X 64 x 64
Encoder 1 Conv2D 64 x 32 x 32 kernel=4, stride=2, padding=1 LeakyReLU
2 Conv2D 64 x 16 x 16 kernel=4, stride=2, padding=1
3 BatchNorm2D eps=le-5, momentum=0.1 LeakyReLU
4 Conv2D 64 X 8 X 8 kernel=4, stride=2, padding=1
5 BatchNorm2D eps=1le-5, momentum=0.1 LeakyReLU
6 Conv2D 128 x 4 x 4 kernel=4, stride=2, padding=1
7 BatchNorm2D 128 x 4 x 4 — 2048 (shaped) eps=1le-5, momentum=0.1 LeakyReLU
8 Linear 1024 LeakyReLU
Classifier 1 Linear 1024 Dropout (p=0.5) LeakyReLU
2 Linear 256 Dropout (p=0.5) LeakyReLU
3 Linear 64 LeakyReLU
4 Linear 2 LogSoftMax
R 1 Linear 1024 Dropout (p=0.5) LeakyReLU
2 Linear 1024 Dropout (p=0.5) LeakyReLU
3 Linear 1022 LeakyReLU
Decoder 1 Linear 2048 — 128 x 4 X 4 (shaped) LeakyReLU
2  ConvTranspose2D 64 X 8 X 8 kernel=4, stride=2, padding=1
3 BatchNorm2D eps=1le-5, momentum=0.1 ReLU
4 ConvTranspose2D 64 x 16 x 16 kernel=4, stride=2, padding=1
5 BatchNorm2D eps=1le-5, momentum=0.1 ReLU
6  ConvTranspose2D 64 x 32 x 32 kernel=4, stride=2, padding=1
7 BatchNorm2D eps=1le-5, momentum=0.1 ReLU
8 ConvTranspose2D 3 X 64 x 64 kernel=4, stride=2, padding=1 Sigmoid

portant to note that the training process does not
consider the noisyfication process.

Regarding the noisyfication procedure, there are
two natural options:

e Adding Gaussian noise with zero mean and a
variance 2 that determines the degree of fea-
ture obfuscation.

e Passing the binary classifier output through
a symmetric binary channel with a crossover
probability of p. In other words, the binary
outputs of the classifier are randomly converted
to each other with a probability of p.

The parameters o2 and p control the privacy level.

The utility provider and adversary structures are
similar to the encoder plus classifier structure, with
the only difference being the output size of the last
layer. The output size depends on the number of
private features the adversary aims to infer or the
number of features desired by the utility provider for
inference.

1S¢0ured)

To measure utility and privacy, we assume that the
adversary’s goal is to infer the gender (male/female)
feature from the obfuscated dataset. The adversary
is trained to make this inference and subsequently
applied to the obfuscated dataset. The accuracy of
the adversary in correctly determining the gender is
considered a measure of privacy. On the other hand,
the smiling feature is considered the desired feature
for the utility provider. We train the utility provider
on the obfuscated dataset and then test the trained
network on the original dataset. The accuracy of the
utility provider in recognizing the desired feature
(smiling) is regarded as a measure of utility.

Our method enables the utility provider or trusted
authority to train an obfuscator for the private feature
of concern. This obfuscator can be shared with data
providers, relieving them of the training burden. Data
providers can adjust the trade-off between utility and
privacy by fine-tuning the noise level according to
their desired level of feature privacy.
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Algorithm 1 Training phase of the framework

Input: Training dataset samples X
Parameters: learning rate n
Ney Ny My Ny
loss weights wge, Wycor, W
Output: Obfuscator Model
Initialization.

/
ae’

!
and w},,

1: for n. epochs do

2 for i =0ton, —1do

3 Randomly picked mini-batch of size B
4 ﬁiJrl = ﬁz - anLae

5: Giv1 = i =NV Lae

6: Oit+1="0; —mVeLse —nValc

7 Q41 = O — nvaLae - nvaLC

8

9

end for

: end for
10: for j =0 to n/, — 1 epochs do
11: if j = n,, then
12: Wae — W,
13: Wdcor = Wiy
14: end if
15: for i=0ton, —1do
16: Randomly picked mini-batch of size B
17: Bi+1 = Bi — MWaeVpLae
18: ¢i+1 = d)’L - nwaevquae - nwdcorvqﬁdeor
19: end for
20: end for
21: return

4 Performance Evaluation

Our experiment is performed using PyTorch [34] on
an NVIDIA 1080 Ti GPU. The image size is 64 x64x 3,
and a mini-batch technique is employed with a batch
size of B = 64. For training all networks, we utilize
the Adam optimizer [35] with a learning rate of 0.001.
The obfuscator, adversary, and utility provider train-
ing procedures are conducted with similar configu-
rations. Networks’ layers start with random weights
from Gaussian distributions: mean zero, variance 0.02
for convolutions and fully connected layers, and mean
one, variance 0.02 for batch normalization layers. To
mitigate overfitting, a dropout technique is imple-
mented in certain layers by randomly excluding units
with a probability of 0.5. The obfuscator undergoes
training on the CelebA dataset for several epochs.
The plot in Figure 4 shows the Peak Signal to Noise
Ratio (PSNR) between X and X’ as a function of
epochs. Afterward, the output of the classifier is per-
turbed by either flipping its output with a probability
of p or adding Gaussian noise with variance o2. The
entire dataset D is then transformed into the dataset
D’ through this obfuscation process.

As depicted in Figure 4, notable changes can be
observed in the autoencoder training loss during spe-
cific epochs, particularly at epoch numbers 50 and 87.

During these epochs, there is a sudden increase in the
autoencoder loss, which can be attributed to the ad-
justment of the loss function weights at the beginning
of these epochs. Regarding the earlier fluctuations in
the autoencoder loss occurring prior to epoch number
50, they arise from inherent characteristics associated
with employing the Adam optimizer.

1.2254

1.200

1.1754

Training Loss

-
N
o
=)

—— Validation Loss
—— PSNR

MSE Loss
PSNR (dB)

1.1254 —0.2

1.100 | 03

1.0751
—04

0 20 40 50 60 80 8§ 100 110
Epoch

Figure 4. Variation of autoencoder loss and PSNR with respect
to the number of epochs

When we consider the obfuscated dataset created
by our scheme, employing flipping noise with a proba-
bility of 0.5, we observe a significant enhancement in
privacy with only a minimal reduction in utility. To
illustrate, let us assume an adversary that has been
well-trained on the CelebA dataset to extract gender
information. When this adversary attempts gender
inference on the obfuscated test set, it achieves an
accuracy of 0.756. In contrast, the accuracy of gen-
der inference on the unobfuscated test set is notably
higher at 0.988. This contrast highlights the substan-
tial privacy amplification provided by the proposed
algorithm, which amounts to an improvement of 0.232.
Shifting our focus to utility, the accuracy of a user’s
inference regarding the smiling feature from the ob-
fuscated test set stands at 0.85, in comparison to 0.95
for the original test set. This slight reduction in utility
reaffirms the effectiveness of the proposed method.

In Figure 5, we compare the utility-privacy trade-
off capability of our proposed scheme with various
methods from different references, where the points
on their curves are obtained from [21]. Considering
gender as the private feature and smiling as the non-
private feature, we depict the trade-off curves us-
ing both flipping and Gaussian noisifications, demon-
strating superior performance compared to the other
methods. For the flipping case, the points progress
from right to left, representing the probabilities p =
0.1,0.2,0.3,0.4,0.5. On the other hand, in Gaussian
noisification, the points are plotted for noise variances
02 = 5v,10v, 151, 20v, 50v. Here, v denotes the mean
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Figure 5. Comparing the trade-off between utility and privacy
in the proposed scheme to that of existing schemes

value of the output nodes from C for each record.
Additionally, it is evident from the figure that by em-
ploying both the methods of adding Gaussian noise
and flipping, we can effectively support a wide range
of utility and privacy requirements. This provides
data owners with a greater degree of freedom in ad-
justing the trade-off between utility and privacy by
adding Gaussian noise or flipping. Furthermore, Fig-
ure 5 illustrates the maximum achievable accuracy
for both the adversary and the utility provider, which
are respectively trained to extract gender and smiling
features.

The references for the algorithms used in the com-
parison are provided in the figure. The term “Noise”
refers to the addition of Gaussian noise with a mean
of zero and a variance of 40, as implemented in [20].
In the learned noise method, a noise component is
introduced to a DNN, and the resulting output is
added to the dataset [18, 19]. To ensure a fair com-
parison, both the adversary and the utility provider
are designed to closely align with the previous works
in terms of achieving maximum privacy and utility.

The visual impact of obfuscation on a set of images
can be observed in Figure 6. As can be seen, increas-
ing flipping and Gaussian noises lead to the gender
feature becoming more vague, while the smiling fea-
ture is preserved.

So far, we have regarded gender as a private fea-
ture and smiling as the desired feature for the util-
ity provider. The extent of correlation between the
private feature and the desired feature of the utility
provider is anticipated to have an impact on the util-
ity derived from the obfuscated dataset. To explore
the influence of this correlation, we initially identified
several features that exhibit varying degrees of correla-
tion with the private feature of gender. We employed
the same correlation measure as described in (9) to
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Original
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Noise
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p=0.2

Flipping
p=20.5

Noisy

o2 =5v

Noisy
0% =10v

Figure 6. The images include originals, noise-free generated
ones, and obfuscated versions with varying flipping probabili-
ties and Gaussian noise variances. Here, v represents the mean
value of the output nodes from C for each record.

compute these correlations. Specifically, we computed
the correlation between 40 features in the CelebA
dataset and the private feature of gender. Among
these features, we selected four (wearing lipstick, at-
tractive, chubby, and pale skin) that displayed differ-
ent levels of correlation, ranging from almost no cor-
relation to a very strong correlation. These features
exhibited correlations of 0.84, 0.4, 0.1, and 0.05 with
gender, respectively. Notably, the correlation of two
of these features is lower than the correlation between
the smiling feature and gender, which is 0.17, while
the other two have higher correlations. Substituting
these four alternative desired features in place of smil-
ing, we present the utility-privacy trade-off curves in
Figure 7, taking into account flipping noise with prob-
abilities of 0.1 and 0.5, as well as Gaussian noise with
variances of 5v and 50v. To ensure a fair comparison
among different features, we normalize the achieved
utility values for each feature to the maximum util-
ity achievable for that feature on the original dataset.
As anticipated, the figure illustrates that when the
correlation between the private and desired features
is lower, the reduction in utility with increasing noise
is less pronounced, resulting in a curve with a gentler
slope. Moreover, within a significant range of corre-
lations, the proposed obfuscation method performs
well. However, in cases of extreme correlations, such
as wearing lipstick, it is expected that the impact of
adding noise on utility becomes more noticeable.

In Figure 8, the autoencoder and decorrelation
losses are depicted versus epochs. As you can see, any
decrease in one loss results in a controlled increase
in another loss, highlighting the importance of the
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Figure 7. The impact of the correlation between desired and
private features on the utility-privacy trade-off, taking into

account flipping and Gaussian noises

carefully designed weighting process in Algorithm 1.
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Figure 8. The trend of autoencoder and decorrelation losses
with respect to the number of epochs

5 Exploring Additional Privacy
Considerations

In this paper, we designed our adversary and utility
provider to closely resemble those used in previous
works, with the goal of achieving comparable levels of
utility-privacy measures. Specifically, the structures
of the adversary and utility provider consist of an
encoder and classifier within our obfuscator scheme,
as illustrated in Table 1. In the following, we address
two additional privacy concerns related to centralized
learning.

e Backdoor existence: This concern revolves
around the trustworthiness of the entity respon-
sible for training the obfuscator, often referred
to as the “trusted center”. The worry is that
this trusted center might introduce a backdoor
or other vulnerabilities into the system, which

could compromise privacy. While this is a valid
concern, it is acknowledged that trust assump-
tions are common in centralized learning scenar-
ios, and they can be addressed through regula-
tory measures and the implementation of open
systems accessible to all.

e Sequential publishing attacks: This con-
cern is related to the potential threat of adver-
saries piecing together information from sepa-
rate, sequentially published datasets to reveal
private data. While securing each individual
dataset may be possible, the combination of
these datasets can still lead to privacy breaches.
Fortunately, our framework demonstrates re-
silience against such attacks, owing to the uti-
lization of large and diverse datasets like CelebA
during the construction of our obfuscator. This
significantly reduces the risk of privacy compro-
mise in sequential publishing scenarios.

6 Conclusion

This paper has introduced a novel autoencoder-based
framework that offers data providers the ability to
protect their desired features’ privacy while preserv-
ing the dataset’s overall utility for other features. Our
proposed structure not only outperforms similar ap-
proaches in terms of the utility-privacy trade-off but
also stands out for its simplicity in design. Further-
more, we have examined the impact of the correlation
between desired and private features on the perfor-
mance of our scheme in the utility-privacy trade-off.
As part of our future work, we aim to consider sce-
narios in which users possess various private features,
with certain features potentially holding greater im-
portance from a privacy perspective. Given this het-
erogeneous nature of features in terms of privacy con-
cerns, we intend to extend the existing framework to
extract the complete set of private features, decorre-
late them appropriately, and obfuscate them using
varying levels of noise. Another intriguing avenue for
further research involves analyzing the proposed al-
gorithm with differential privacy tools to provide an
analytical assessment of the privacy offered by the
scheme.
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