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A B S T R A C T

Linear diffusion layer is an important part of lightweight block ciphers and

hash functions. This paper presents an efficient class of lightweight 4× 4 MDS

matrices such that the implementation cost of them and their corresponding

inverses are equal. The main target of the paper is hardware oriented

cryptographic primitives and the implementation cost is measured in terms of

the required number of XORs. Firstly, we mathematically characterize the MDS

property of a class of matrices (derived from the product of binary matrices

and companion matrices of σ-LFSRs aka recursive diffusion layers) whose

implementation cost is 10m+ 4 XORs for 4 ≤ m ≤ 8, where m is the bit length

of inputs. Then, based on the mathematical investigation, we further extend

the search space and propose new families of 4× 4 MDS matrices with 8m+ 4

and 8m+ 3 XOR implementation cost. The lightest MDS matrices by our new

approach have the same implementation cost as the lightest existent matrix.

c© 2019 ISC. All rights reserved.

1 Introduction

P roviding proper diffusion and confusion are two
fundamental requirements of any secure crypto-

graphic primitive. In general, in symmetric cryptogra-
phy, e.g. block ciphers, stream ciphers and hash func-
tions, to provide the desired confusion and diffusion, a
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combination of nonlinear components and linear diffu-
sion layers are used iteratively through several rounds.
Among various available linear layers, MDS and al-
most MDS matrices are of more interest for designing a
secure cipher, especially in wide trails designing based
approaches, because of their fast diffusion property
which is also known as high branch number. However,
for constrained applications, e.g. RFID and IoT, the
implementation cost of these matrices is a bottleneck.
In this paper, we aim to put one step forward to over-
come this problem by presenting hardware-efficient
classes of lightweight 4×4 MDS matrices M for which
the implementation cost of M and M−1 are the same,
where M−1 denotes the inverse of M .
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1.1 Related Work

The design of lightweight MDS matrices has drawn
the attention of many cryptographic researchers. For
example, designers of lightweight hash function PHO-
TON [1] use a companion matrix of an LFSR M such
that M4 is an MDS matrix; in this case, applying
M four times on inputs has less implementation cost
than applying M4 directly on inputs. This idea is ex-
tended by Sajadieh et al. [2] and Wu et al. [3], which
is named recursive perfect diffusion layers. This ap-
proach uses the companion matrix of σ−LFSRs [4]
instead of LFSRs.

In [5], Xu et al. present 4× 4 recursive perfect diffu-
sion layers over m−bit inputs for hardware implemen-
tations which require 12m + 12 XORs for 5 ≤ m ≤
7 and 12m + 24 XORs for m = 8. Beierle et al. [6]
construct lightweight circulant MDS matrices with
the aid of lightweight multiplication in F2m (the field
with 2m elements). Their 4× 4 MDS matrices require
12m + 12 XORs for 4 ≤ m ≤ 8. In [7], lightweight
4× 4 MDS matrices is constructed with 61 and 106
XOR implementation cost over 4-bit and 8-bit inputs
respectively.

Bai and Wang [8] characterize lightweight 4 × 4
MDS matrices with 4-bit inputs which requires 58
XORs for implementation. After that, in [9] a class
of 4 × 4 MDS matrices was produced with the help
of Toeplitz matrices with 58 XORs for 4-bit and 123
XORs for 8-bit inputs by Sarkar et al. Then, Guo et
al. [10] provided a large class of 4× 4 MDS matrices
for arbitrary m-bit (m ≥ 4) inputs; in the case of
m=4,8 the presented matrices need 64 and 128 XORs
respectively. Later, in [11] Cauchois et al. constructed
quasi-involutory recursive-like MDS matrices from
2-cyclic codes for which the implementation cost of
4 × 4 MDS matrices with 4-bit inputs is 72 XORs.
In [12] Zhang et al. constructed circulant 4× 4 MDS
matrices over 4-bit inputs which requires 60 XORs for
implementation. Zhou et al. [13] proposed two kinds
of lightweight 4×4 MDS matrices over 4-bit and 8-bit
inputs which require 58 and 106 XORs, respectively.

In previously discussed researches, the authors in-
vestigate 4× 4 matrices with non-zero entries which
are MDS and the implementation cost of their entries
are as lightweight as possible. In this regard, the imple-
mentation cost of the additions through the action of
the matrix over m-bit inputs takes 12m XORs which
was considered as a lower bound for the implemen-
tation cost of MDS matrices. In this notion, finding
low-cost MDS matrices boils down to reducing the
implementation cost of the entries of matrices. An-
other procedure to efficiently implement 4× 4 MDS
matrices acting on m-bit inputs, is to consider them
as 4m × 4m binary matrices and then improve the

implementation cost by reusing the resources, which
is common in hardware implementations. Applying
this method, the authors of [14] give lighter imple-
mentations than the claimed costs in the previously
discussed papers, which shows that 12m is not a lower
bound for the implementation cost of 4× 4 MDS ma-
trices over m-bit inputs. Most notably, a 4× 4 MDS
matrix with 4-bit inputs is presented which takes 36
XORs. The proposed method of [14] is not efficient for
large values of m: for example the presented matrix
for m = 8 takes 72 XORs which is derived through the
parallel application of two 4× 4 MDS matrices over
4-bit inputs, while the lightest ones take 67 XORs. Re-
cently, two other papers on the construction of 4× 4
MDS matrices over m-bit inputs are published which
break the claimed 12m XORs lower bound [15, 16]. In
[15], a new class of lightweight serial-type 4× 4 MDS
matrices are presented which need 4 clocks for imple-
mentation. Especially in the case of 4-bit inputs, each
clock takes 10 XORs which requires 40 XORs for im-
plementation in one clock. In [16], the authors follow
the search idea of [14] with a different approach. In
fact, their approach is somehow finding linear straight
line programs by the limitation on the number of simul-
taneously available variables and only use operations
on words rather than on bits. In fact, [15, 16] have a
structural approach to optimize the implementation
cost of MDS matrices. As a result, they give families of
lightweight MDS matrices. Unlike the implementation
concept of [14], the constructions presented in [15, 16]
over m-bit inputs fit software implementations over
m-bit processors. The papers [15, 16] use both global
and local optimizations in their structures. The result
is the construction of lightweight 4× 4 MDS matrices
over 4,8-bit inputs with 35 and 67 XORs implemen-
tation cost respectively, which are the lightest to the
best of our knowledge.

1.2 Our Contribution

Our concern in this paper is to construct lightweight
4 × 4 MDS matrices with efficient implementation
in hardware, measured by the number of XOR gates
required. As stated in [17], the implementation cost
of a given linear layer depends not only on its matrix
but also on its implementation methods. So, we use a
composition method to construct our 4×4 lightweight
MDS matrices.

For more details, we characterize the MDS property
of matrices in the form of M = BC4 where C is a
companion matrix of a 4-stage σ-LFSR and B is a
4× 4 matrix with entries in R = {0, I}. This method
produces MDS matrices on m-bit inputs which require
10m + 4 XORs for 4 ≤ m ≤ 8. By alternating the
positions of binary and companion matrices in the
characterized MDS matrices, we search the matrices of

ISeCure



January 2019, Volume 11, Number 1 (pp. 35–46) 37

Table 1. A Comparison between the implementation cost of 4× 4 MDS matrices, for m = 4, 8 as the bit length

m [6] [7] [8] [9] [10] [11] [12] [13] [15] [14] [16]
This
paper

4 60 61 58 58 64 72 60 58 40 36 35 35

8 108 106 —– 123 128 —– —– 106 72 72 67 67

the form M = B1C1B2C2B3C3B4C4B5, where Bi’s
and Cj ’s, 1 ≤ i ≤ 5, 1 ≤ j ≤ 4, are binary and
companion matrices, respectively. The result is the
production of new families of 4 × 4 MDS matrices
with 8m+ 4 and 8m+ 3 XOR implementation cost on
m-bit input words. Our resulted MDS matrices over
m-bit inputs fit software implementations over m-bit
processors.

A comparison between the implementation cost of
our proposed lightweight 4× 4 MDS matrices and the
best known related constructions is given in Table 1
for m = 4, 8 bit inputs (see Section 3 and Section 4
for details of our constructions).

1.3 Paper Organization

In Section 2, we give the preliminary notations and
definitions. Section 3 characterizes new families of
MDS matrices. In Section 4, we propose new families
of the lightest MDS matrices. Section 5 concludes the
paper.

2 Preliminaries

We use the following notations and definitions
throughout this paper.

2.1 Notations

In this paper, n and m are natural numbers. By |A| we
mean the number of elements or cardinality of a finite
set A. We denote the set of all n × n matrices with
entries in R byMn(R). The determinant of a matrix
A in Mn(R) is denoted by detR(A). AT represents
transpose of a matrix A. The XOR of two binary
vectors or matrices v and w is denoted by v⊕w. Zero
vectors or matrices are denoted by 0 and any identity
matrix is denoted by I. We use F2 and Fm

2 to represent
a finite field with two elements and the set of all m-bit
vectors, respectively.

For the sake of simplicity, to represent binary square
matrices, only non-zero positions in each row will
be listed; for example, [4; (1, 3, 4); (2, 5); 1; 3] is the
representation of the following matrix:



0 0 0 1 0

1 0 1 1 0

0 1 0 0 1

1 0 0 0 0

0 0 1 0 0


.

A square matrix M of order n is represented by
M = [M1,M2, . . . ,Mn] which Mi, 1 ≤ i ≤ n, is the
i-th row of M . The square submatrix of M including
the rows i1, . . . , it and columns j1, . . . , jt, 1 ≤ t ≤ n,
is denoted by M{i1,...,it}{j1,...,jt}.

A cyclic matrix is a matrix whose rows (columns)
are cyclic shifts of each other. By the notation A =
cycl(a1, a2, a3, . . . , an) we mean

A =


a1 a2 a3 . . . an

an a1 a2 . . . an−1
...

...
...

. . .
...

a2 a3 a4 . . . a1

 .

In this paper, we use invertible 4× 4 matrices with
entries in R = {0, I} ⊂ Mm(F2). For a vector v =
(v3, v2, v1, v0) ∈ R4, we correspond a number v̄ =∑
vi 6=0

2i in hexadecimal representation. Accordingly, a

matrix M = [M1,M2,M3,M4] ∈ M4(R) is denoted
by M̄1M̄2M̄3M̄4. For instance, the following matrix is
represented by 1bc9:

M =


0 0 0 I

I 0 I I

I I 0 0

I 0 0 I

 .

An n-stage σ-LFSR over Fm
2 , generates a sequence of

states Si ∈ (Fm
2 )n. Each state is obtained by applying

a matrix A ∈Mn(Mm(F2)) on the previous state as
follows:

Si+1 = SiA, i ≥ 0,

ISeCure
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A =



0 I 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I

A1 A2 A3 . . . An


.

The matrix A is called the companion ma-
trix of the σ-LFSR and we denote it by A =
comp(A1, A2, A3, . . . , An).

2.2 Definitions

A matrix M ∈ Mnm(F2) can be represented as (a
block-wise matrix)

M = [Ai,j ]n×n, Ai,j ∈Mm(F2), 1 ≤ i, j ≤ n.
(1)

In fact, the matrixM could be considered as a member
ofMn(Mm(F2)). The i-th component of a vector x ∈
(Fm

2 )n is denoted by xi, i.e. x = (xn−1, ..., x0). The
weight of a vector x ∈ (Fm

2 )n with respect to m-bit
inputs is denoted by wtm(x) and is defined as

wtm(x) = |{ xi : xi 6= 0, 0 ≤ i < n}|.

Definition 1. Let M ∈ Mnm(F2). The differential
branch number of M with respect to m-bit inputs is
defined as

Bdm(M) = min
x 6=0
{wtm(x) + wtm(xM) : x ∈ (Fm

2 )n};

and the linear branch number is defined as

Blm(M) = min
x 6=0
{wtm(x) + wtm(xMT ) : x ∈ (Fm

2 )n}.

Definition 2. A matrix M ∈ Mnm(F2) is called
MDS with respect to m-bit inputs if and only if

Bdm(M) = Blm(M) = n+ 1.

A sufficient condition for a matrix M to be MDS is
that Bdm(M) = n+ 1 [18].

Let M and N be two matrices such that the rows of
M are a permutation of the rows of N (and vice versa).
In this case, we say that M and N are equivalent
matrices and we write M ≡ N .

3 Characterization of a New Family of
4× 4MDSMatrices

In this section, we characterize 4× 4 MDS matrices
of the form M = BC4. Here, for 1 ≤ i ≤ 4,

C = comp(A1, A2, A3, A4), Ai ∈ {0, I, A} ⊂ Mm(F2),

is a companion matrix of a 4-stage σ-LFSR and just
two of Ai’s are nonzero (to reduce the implementation
cost) and B is a matrix with entries in R = {0, I} ⊂
Mm(F2). According to [19, Theorem 4.1.15], we can

state that there are
∏3

i=0(24 − 2i) = 20160 invertible
matrices in M4(R). In addition, we have 6 choices
for C to be invertible. Hence, it is enough to verify
the MDS property of 20160 × 6 = 120960 classes
of matrices. For the mentioned characterization, we
need the following theorems and lemma from related
literature:
Theorem 1. [20] For M ∈ Mn(Mm(F2)), M is
MDS with respect to m-bit inputs if and only if every
square submatrix of M of order t, 1 ≤ t ≤ n, is
invertible.
Theorem 2. [21] For M ∈ Mnm(F2), according to
representation (1), if the entries ofM inR =Mm(F2)
are pairwise commuting, then

detF2(M) = detF2(detR(M)).

The following lemma is a straightforward result of
[19, Theorem 4.5.6].
Lemma 1. The differential branch numbers of equiv-
alent matrices are equal.

Given the above theorems and lemma, we charac-
terize the target MDS matrices of the current section.
To do this, let R = {0, I} ⊂ Mm(F2), A ∈ Mm(F2),
B ∈M4(R) and C = comp(I, A,0,0). We verify the
MDS property of the matrices M = BC4. Firstly,
we analyze the different cases of matrix B. Each in-
vertible matrix B ∈M4(R) is equivalent to 4! other
different matrices; so, by Lemma 1, it is sufficient to
verify 20160

4! = 840 different equivalent classes for B.
We have

C4 =


I A 0 0

0 I A 0

0 0 I A

A A2 0 I

 .

By our notations, let B = [B1, B2, B3, B4] where
each Bi, 1 ≤ i ≤ 4, is the i-th row of B. We write
w(Bi) = t, 1 ≤ i ≤ 4, if the number of non-zero
entries of Bi equals to t. Based on the values of w(Bi),
we distinguish three cases:

Case 1: w(Bi) = 1 for some 1 ≤ i ≤ 4.

Without loss of generality, let w(B1) = 1. Then,M1

(the first row of M) would be a row of C4. Since, each
row of C4 has at least a zero entry, so, by Theorem 1,
M could not be an MDS matrix.

Case 2: w(Bi) = 2 for some 1 ≤ i ≤ 4 and
w(Bj) 6= 1 for each 1 ≤ j ≤ 4.

Without loss of generality, let w(B1) = 2; so, we
have 6 vectors B1 ∈ R4 as follows:

(I, I,0,0), (I,0, I,0), (I,0,0, I),

(0, I, I,0), (0, I,0, I), (0,0, I, I).

ISeCure
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It turns out that the corresponding first rows of M
are as follows, respectively:

(I, I ⊕A,A,0), (I, A,A,A), (I ⊕A,A⊕A2,0, I),

(0, I, I ⊕A,A), (A, I ⊕A2, A, I), (A,A2, I, I ⊕A).

Hence, given that for B1 ∈ {(I, I,0,0), (I,0,0, I),
(0, I, I,0)} the corresponding matrix M has at
least one zero entry, so, such matrix M could not
be MDS. For the remaining B1’s, i.e. B1 ∈ S =
{(I,0, I,0), (0, I,0, I), (0,0, I, I)}, it is enough to
verify the following three subcases:

Case 2.1: w(Bi) ≥ 3, i = 2, 3, 4.

By programming, we obtained all of the invertible
matrices B satisfying the conditions of this subcase.
Each matrix B is equivalent to one of the following
matrices:

(3db7,M{1,3}{3,4}), (3eb7,M{1,4}{1,4}), (3fd7,M{2,4}{3,4}),

(3fdb,M{1,4}{3,4}), (3fe7,M{2,4}{3,4}), (3feb,M{1,4}{3,4}),

(5db7,M{1,2}{3,4}), (5ed7,M{1,3}{3,4}), (5fdb,M{1,3}{3,4}),

(5fe7,M{2,4}{3,4}), (5fed,M{1,4}{3,4}), (5fb7,M{2,4}{2,4})),

(aeb7,M{1,3}{1,2}), (aedb,M{1,4}{1,2}), (afb7,M{2,4}{3,4}),

(afdb,M{1,4}{1,2}), (afe7,M{2,4}{3,4}), (afed,M{2,4}{1,2}).

Note that, the above list also contains a related non-
invertible submatrix of the corresponding matrixM =
BC4.

Case 2.2: B2 ∈ S, w(Bi) ≥ 3, i = 3, 4.

In this subcase, any invertible matrixB is equivalent
to one of the following matrices which are listed by a
related non-invertible submatrix of the corresponding
matrix M :

(53b7,M{2,3}{3,4}), (53d7,M{1,3}{3,4}), (53e7,M{2,4}{1,4}),

(53f7,M{1,4}{1,2}), (53fb,M{2,4}{3,4}), (53fd,M{1,4}{3,4}),

(53fe,M{1,3}{1,3}), (a3b7,M{2,3}{3,4}), (a3db,M{1,2}{1,2}),

(a3eb,M{1,2}{1,2}), (a3f7,M{1,2}{1,2}), (a3fb,M{1,2}{1,2}),

(a3fd,M{1,2}{1,2}), (a3fe,M{1,2}{1,2}), (a5b7,M{1,2}{1,3}),

(a5db,M{1,2}{1,3}), (a5e7,M{1,2}{1,3}), (a5ed,M{2,4}{3,4}).

Case 2.3: Bi, Bj ∈ S, i, j > 1, i 6= j .

By the assumptions of this subcase, each invertible
matrix B is equivalent to one of the following four
matrices:

(a537,M{1,3}{1,2}), (a53b,M{1,3}{1,2}),

(a53d,M{1,3}{1,2}), (a53e,M{1,3}{1,2}).

Case 3: w(Bi) ≥ 3, 1 ≤ i ≤ 4, and B 6≡
cycl(0, I, I, I).

In this case, each invertible matrix B is equivalent
to one of the following four matrices:

(fdb7,M{1,4}{3,4}), (feb7,M{1,4}{3,4}),

A

A

A

A

Y0 Y1 Y2 Y3

X0 X1 X2 X3

Figure 1. The corresponding diffusion layer of (2)

(fed7,M{1,3}{1,2}), (fedb,M{1,3}{1,2}).

Up to now, our analysis for different cases of B
shows that the matrix M = BC4 would not be MDS
if B 6≡ cycl(0, I, I, I). So, we verify the case B ≡
cycl(0, I, I, I) separately in the next theorem.
Theorem 3. Let R = {0, I} ⊂ Mm(F2), A ∈
Mm(F2), B ≡ cycl(0, I, I, I) ∈ M4(R) and C =
comp(I, A,0,0). The matrix M = BC4 is MDS with
respect to m-bit inputs if and only if A, I ⊕ A3 and
I ⊕A7 are invertible.

Proof:Let x = (x3, x2, x1, x0) and y = (y3, y2, y1, y0)
be the inputs and outputs of the linear mapping corre-
sponding to the matrix M , respectively; i.e. y = xM .
Without loss of generality, let B = cycl(0, I, I, I).
The explicit relations between x and y are

M :



y0 = x1 ⊕ x2 ⊕ x3 ⊕ (x0 ⊕ x2 ⊕ x3)A,

y1 = x0 ⊕ x2 ⊕ x3 ⊕ (x0 ⊕ x1 ⊕ x3)A,

y2 = x0 ⊕ x1 ⊕ x3 ⊕ (x0 ⊕ x1 ⊕ x2)A

⊕(x1 ⊕ x2 ⊕ x3)A2,

y3 = x0 ⊕ x1 ⊕ x2 ⊕ (x1 ⊕ x2 ⊕ x3)A.

(2)

The corresponding diffusion layer ofM is illustrated
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in Figure 1. We must show that for each x 6= 0,
wtm(x)+wtm(y) ≥ 5 is satisfied if and only ifA, I⊕A3

and I ⊕A7 are invertible. We have detR(M) = I. By
Theorem 2, detF2

(M) = detF2
(detR(M)) = 1; so M is

invertible. Thus, for every x 6= 0 we have y 6= 0. This
means that if wtm(x) = 4, then wtm(y) ≥ 1 for any
choice ofA. In the following, we show that if wtm(x) =
i, i = 1, 2, 3, then wtm(xM) ≥ 5 − i provided that
A, I ⊕A3 and I ⊕A7 are invertible and vice versa.

Case 1: wtm(x) = 1.

In this case, we should verify four subcases in which,
exactly one of xi’s, i = 0, 1, 2, 3 are non-zero. Now,
consider the subcase,

x0 6= 0, x1 = x2 = x3 = 0 or x = (0,0,0, x0 6= 0).

In this subcase, (2) will be simplified to

M :


y0 = x0A,

y1 = x0(I ⊕A),

y2 = x0(I ⊕A),

y3 = x0.

If M is an MDS matrix, then y0, y1, y2, y3 must
be non-zero for any choice of x0 6= 0. Clearly, y3
is nonzero. By the basic theorems of matrix theory
y0, y1, y2 are non-zero if and only if A and I ⊕A are
invertible. Similarly, the other three subcases adds
the invertibility of I ⊕A⊕A2, A⊕A2 and I ⊕A2 to
the previous conditions. Since, A ⊕ A2 = A(I ⊕ A)
and I ⊕ A2 = (I ⊕ A)2, the conditions derived from
this subcase would be the invertibility of A, I ⊕A and
I ⊕A⊕A2.

Case 2 wtm(x) = 2.

In this case, we have six different subcases. We
analyze the subcase

x0 6= 0, x1 6= 0, x2 = x3 = 0 or x = (0,0, x1 6= 0, x0 6= 0),

in details. By the assumptions, (2) will be reduced to

M :


y0 = x1 ⊕ x0A,
y1 = x0(I ⊕A)⊕ x1A,
y2 = x0(I ⊕A)⊕ x1(I ⊕A⊕A2),

y3 = x0 ⊕ x1(I ⊕A).

(3)

To guarantee wtm(x) + wtm(y) ≥ 5 we should find
conditions for which at most one of yi’s, i = 0, 1, 2, 3,
is zero. Now, let y0 = x1 ⊕ x0A = 0. Then we have
x1 = x0A. Replacing x1 in (3) we obtain,

M :


y1 = x0(I ⊕A⊕A2),

y2 = x0(I ⊕A2 ⊕A3),

y3 = x0(I ⊕A⊕A2).

These equations imply that y1, y2, y3 are non-zero if
and only if I ⊕A⊕A2 and I ⊕A2⊕A3 are invertible.

Moreover, the invertibility of I⊕A⊕A2 and I⊕A2⊕A3

impose that y0 and y1 can not be zero simultaneously.

Now, let y1 = x0(I ⊕A)⊕ x1A = 0. We get x0(I ⊕
A) = x1A. As stated before, y0 and y1 can not be
zero simultaneously. Thus, we have y0 6= 0. Replacing
x0(I ⊕A) in the third equation of (3), we get

y2 = x1(I ⊕A2).

For y2 to be non-zero, I ⊕ A2 should be invertible,
which we have already taken. Now, from the fourth
equation of (3) we have

y3(I ⊕A) = x0(I ⊕A)⊕ x1(I ⊕A2) = x1A⊕ x1(I ⊕A2)

= x1(I ⊕A⊕A2).

This equation implies that y3 6= 0 if and only if
I ⊕A⊕A2 is invertible. This condition has also been
appeared in the previous subcases. The proof proce-
dure implies that the set of {y0, y1, y2} could not have
more than one zero element. So, it turns out that if
y2 = 0, then y0, y1 6= 0.

Now let y2 = x0(I ⊕A)⊕ x1(I ⊕A⊕A2) = 0. We
get x0(I ⊕A) = x1(I ⊕A⊕A2). As discussed before,
y0 and y1 in this subcase would be non-zero. From the
fourth equation of (3) we have

y3(I ⊕A) = x0(I ⊕A)⊕ x1(I ⊕A2)

= x1(I ⊕A⊕A2)⊕ x1(I ⊕A2) = x1A.

Here, y3 is non-zero if and only if A is invertible,
which we obtained before. Similarly, based upon the
imposed conditions, the proof procedure implies that
the set of {y0, y1, y2, y3} could not have more than one
zero element. Thus y3 = 0 implies that y0, y1, y2 6= 0.

We verified the remaining five subcases (with
wtm(x) = 2) similar to the procedure of the proof in
this case. Only the invertibility of I ⊕A⊕A3 would
be added to the previous conditions.

Case 3 wtm(x) = 3.

In this case, we verify the matrix M−1 in order
to find conditions for which wtm(y) ≥ 2. By matrix
calculations, the explicit relations between x and y
such that x = yM−1 is as follows (the corresponding
diffusion layer of M−1 is illustrated in Figure 2):

M−1 :



x0 = y1 ⊕ y2 ⊕ y3 ⊕ (y0 ⊕ y2 ⊕ y3)A

⊕(y1 ⊕ y3)A2 ⊕ y2A3 ⊕ y3A4,

x1 = y0 ⊕ y2 ⊕ y3 ⊕ (y0 ⊕ y1 ⊕ y3)A

⊕(y1 ⊕ y2)A2 ⊕ (y2 ⊕ y3)A3 ⊕ y3A4,

x2 = y0 ⊕ y1 ⊕ y3 ⊕ (y0 ⊕ y1 ⊕ y2)A

⊕(y1 ⊕ y2 ⊕ y3)A2 ⊕ (y2 ⊕ y3)A3 ⊕ y3A4,

x3 = y0 ⊕ y1 ⊕ y2 ⊕ (y1 ⊕ y2 ⊕ y3)A

⊕(y2 ⊕ y3)A2 ⊕ y3A3.

(4)
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Figure 2. The corresponding diffusion layer of (4)

Now, let y3 6= 0 and y0 = y1 = y2 = 0. By these
assumptions, (4) will be simplified to

M−1 :


x0 = y3(I ⊕A)(I ⊕A2 ⊕A3),

x1 = y3(I ⊕A)2(I ⊕A⊕A2),

x2 = y3(I ⊕A)(I ⊕A⊕A3),

x3 = y3A(I ⊕A⊕A2).

According to the conditions derived from Case 1
and Case 2; i.e. A, I ⊕A, I ⊕A⊕A2, I ⊕A2⊕A3 and
I ⊕A⊕A3 are invertible, we conclude that x0, x1, x2
and x3 are non-zero. The same argument shows that
if wtm(y) = 1, then wtm(x) = 4. By contraposition,
we obtain that if wtm(x) 6= 4, then wtm(y) 6= 1. So,
if wtm(x) = 3 we get wtm(y) 6= 1 and since M is
invertible, we have wtm(y) 6= 0. Thus, wtm(y) ≥ 2.
Therefore, in this case wtm(x) + wtm(y) ≥ 5, adding
no extra condition to the set of conditions in Case 1

and Case 2.

Summing up, M is MDS if and only if A, I ⊕
A, I ⊕ A ⊕ A2, I ⊕ A2 ⊕ A3 and I ⊕ A ⊕ A3 are in-
vertible. Given that I ⊕ A3 = (I ⊕ A)(I ⊕ A ⊕ A2)
and I ⊕A7 = (I ⊕A)(I ⊕A⊕A3)(I ⊕A2 ⊕A3), the
proof completes. �

To complete the characterization of the matrices
mentioned in the beginning of the current section, we
applied programming for the other five choices of the
matrix C, i.e.

C ∈ {comp(I,0,0, A), comp(I,0, A,0), comp(A, I,0,0),

comp(A,0, I,0), comp(A,0,0, I)}.

Regarding Theorem 1 and Theorem 2, the results of
the programming shows that in the case of

C ∈ {comp(I,0, A,0), comp(A, I,0,0), comp(A,0, I,0),

comp(A,0,0, I)},

for each choice of B ∈M4(R), the matrix M = BC4

could not be MDS. Further, the next corollary, which
could also be proved in the same manner as Theorem 3,
is reaffirmed by our programming.
Corollary 1. For R = {0, I} ⊂ Mm(F2), A ∈
Mm(F2), B ∈ M4(R) and C = comp(I,0,0, A),
the matrix M = BC4 is MDS if and only if B ≡
cycl(0, I, I, I) and A, I⊕A3 and I⊕A7 are invertible.

4 The Lightest 4× 4MDSMatrices

In this section, we first give examples of the most
efficient MDS matrices derived from Theorem 3 and
Corollary 1. Then we propose families of lightweight
4 × 4 MDS matrices as well as an improved family,
which has the lightest implementation cost up to now.

Since the structures of the matrices in Theorem 3
and Corollary 1 are similar, the implementation cost
of the proposed matrices and their inverses require
10m+4aXORs form-bit inputs, according to Figure 1
and Figure 2. Here, a is the number of XORs needed
to implement the matrix A. As, A and I ⊕A3 should
be invertible, we have a ≥ 1. The most applicable
cases for hardware-oriented diffusion layers used in
lightweight ciphers are m = 4, 5, 6, 7, 8. To construct
the lightest 4 × 4 MDS matrices with respect to 4-
bit entries, given in Theorem 3 and Corollary 1, the
first step is to find invertible matrices A ∈ M4(F2)
with a = 1 such that I ⊕A3 and I ⊕A7 are invertible.
We exhaustively searched among all the invertible
matrices inM4(F2) satisfying the desired conditions.
In (5), we list the set of all 48 matrices with a = 1. So,
choosing A from (5), the implementation cost of the
resulted MDS matrices as well as their inverses is 44
XORs.
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Table 2. List of the lightest 4× 4 MDS matrices: C = comp(I,0,0, A), C∗ = comp(A,0,0, I).

Matrix Corresponding conditions (matrices

should be invertible)

M1 = 6419× C × 8214× C × 8241× C × 8214× C × 81a5 A, I ⊕A3, I ⊕A7, I ⊕A⊕A4

M2 = C × 2194× C × 8214× C × 42c1× C × 183c A, I ⊕A3, I ⊕A7, I ⊕A⊕A4

M3 = 6419× C × 2194× C × 8214× C × 42c1× C A, I ⊕A3, I ⊕A7, I ⊕A⊕A4

M4 = C × 8214× C × 2814× C × 8214× C × 5adb A, I ⊕A3, I ⊕A⊕A3, I ⊕A⊕A4

M5 = 124c× C∗ × 2814× C × 8214× C × 8241× C × 15da A, I ⊕A3, I ⊕A7

1286, 1294, 1846, 18c2, 1942, 1a84, 214a, 2158,

281c, 2854, 2948, 2a14, 3814, 3842, 418a, 41c2,

421c, 4298, 4318, 4382, 5182, 5284, 6148, 6218.

1285, 12a4, 1684, 1843, 1862, 1c42, 2149, 2168,

2548, 2815, 2834, 2c14, 4183, 41a2, 4219, 4238,

4582, 4618, 9284, 9842, a148, a814, c182, c218.

(5)

Similarly, for 5 ≤ m ≤ 8, we have exhaustively
searched invertible matricesA ∈Mm(F2) with 1 XOR
implementation cost, such that I ⊕A3 and I ⊕A7 are
invertible. Our experimental results show that there
are 240, 2160, 20160 and 93600 such matrices for m =
5, 6, 7, 8, respectively. We present some samples for
each value of m in (6). Hence, employing any of those
matrices in the constructions derived from Theorem 3
and Corollary 1, leads to MDS matrices over m-bit
inputs with the implementation cost of 10m+4 XORs.

[2; 5; 4; (1, 5); 3], [3; (3, 5); 2; 1; 4],

[(2, 3); 1; 4; 5; 2], [(2, 5); 4; 5; 3; 1],

[2; (2, 5); 1; 6; 4; 3], [2; (3, 4); 6; 3; 1; 5],

[(1, 2); 3; 2; 5; 6; 1], [(1, 6); 1; 2; 3; 4; 5],

[(4, 6); 1; 2; 3; 4; 7; 5], [2; 6; 4; (1, 7); 3; 7; 5], (6)

[7; (1, 4); 5; 1; 2; 3; 6], [7; 1; 2; 5; (1, 6); 3; 4],

[8; 7; 5; 6; 4; 3; 1; (2, 6)], [8; 7; 5; (3, 4); 6; 4; 1; 2],

[(2, 3); 1; 4; 5; 6; 7; 8; 2], [(2, 3); 6; 8; 1; 7; 4; 3; 5].

Now, we present the main experimental results of
the paper. We use programming to find potential 4×4
MDS matrices with an implementation cost less than
10m+ 4 XORs on m-bit inputs based on the product
of companion and binary matrices. The investigated
matrices are of the form

M = B1C1B2C2B3C3B4C4B5,

where, Bi’s, 1 ≤ i ≤ 5, are invertible binary matrices
and for 1 ≤ i ≤ 4,

Ci ∈ {comp(I, A,0,0), comp(I,0, A,0),

comp(I,0,0, A), comp(A, I,0,0),

comp(A,0, I,0), comp(A,0,0, I)}.

As stated before, there are 20160 4× 4 invertible bi-
nary matrices. So, an exhaustive search in this space
includes the investigation of (20160)564 ≈ 281.83 ma-
trices which is infeasible. In this class of matrices we
could take Ci ∈ {comp(I,0,0, A), comp(A,0,0, I)},
1 ≤ i ≤ 4, because,

comp(I, A,0,0) = 2481 comp(I,0,0, A) 8124,

comp(I,0, A,0) = 8241 comp(I,0,0, A) 8412,

comp(A, I,0,0) = 2481 comp(A,0,0, I) 8124,

comp(A,0, I,0) = 8241 comp(A,0,0, I) 8412.

This reduces the space to (20160)524 ≈ 275.49 matrices
which is yet infeasible. Using Theorem 1, Theorem 2
and limiting the variations ofBi’s, 1 ≤ i ≤ 5, we found
five families of MDS matrices. The acquired matrices
and their corresponding conditions to be MDS are
presented in Table 2. For instance, we elaborate on
M2:

M2 =


I ⊕A I A A

I I ⊕A A I ⊕A

A2 A2 I I ⊕A

I ⊕A3 A3 I ⊕A I ⊕A⊕A2

 .

According to Theorem 2, the determinants of all
square sub-matrices of M2 are

I, A, I ⊕A, A2, (I ⊕A)2, I ⊕A3,

I ⊕A⊕A3, I ⊕A2 ⊕A3,

A2(I ⊕A⊕A2), (I ⊕A)3,

(I ⊕A)4, (I ⊕A⊕A2)2,

(I ⊕A)(I ⊕A⊕A3), (I ⊕A)(I ⊕A3), I ⊕A⊕A4.

(7)

Given that I⊕A3 = (I⊕A)(I⊕A⊕A2), I⊕A7 =
(I⊕A)(I⊕A⊕A3)(I⊕A2⊕A3) and regarding (7), all
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Figure 3. Implementation of the matrix M2, in Table 2

sub-matrices of M2 are invertible (M2 is MDS) if and
only if A, I⊕A3, I⊕A7 and I⊕A⊕A4 are invertible.

To calculate the precise implementation cost of the
matrices presented in Table 2, the implementation of
M2 and M−12 are presented in Figure 3 and Figure 4,
respectively. So, the implementation cost of M2 and
M−12 over m-bit inputs are 8m+ 4a XORs, where a
is the implementation cost of the matrix A. Similar
calculations show that the implementation costs of all
presented matrices in Table 2 and their corresponding
inverses are equal (note that, 5adb = 183c× a185 and
15da = 4138×a185). Thus, an exhaustive search over
1 XOR matrices A ∈M4(F2) for which A, I⊕A3, I⊕

Figure 4. Implementation of the matrix M−1
2 , in Table 2

A7, I ⊕ A⊕ A4 are invertible, results in 24 matrices
which are listed in (8). This list also presents all of
4 × 4, 1 XOR matrices A, for which A, I ⊕ A3, I ⊕
A⊕ A3, I ⊕ A⊕ A4 are invertible. This means that,
for any choice of A from (8), all of the matrices in
Table 2 would be MDS over 4-bit inputs with 36 XOR
implementation cost.

1285, 12a4, 1684, 1843, 1862, 1c42, 2149, 2168,

2548, 2815, 2834, 2c14, 4183, 41a2, 4219, 4238,

4582, 4618, 9284, 9842, a148, a814, c182, c218.

(8)

We have exhaustively searched invertible matrices
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A ∈ Mm(F2), 5 ≤ m ≤ 8, with 1 XOR implementa-
tion cost, such that I ⊕ A3, I ⊕ A7 and I ⊕ A ⊕ A4

are invertible. There are 240, 2160, 20160 and 40320
such matrices for m = 5, 6, 7, 8, respectively. Hence,
the matrices in Table 2 produce MDS matrices with
8m+ 4 XOR implementation cost.

4.1 The Improved Implementation Cost of
M5 in Table 2

Here, we improve the implementation cost of the M5

family of matrices presented in Table 2 which culmi-
nates in 4 × 4 MDS matrices over 4-bit inputs with
35 XOR implementation cost. Using some matrix cal-
culations we have:

C∗ × 2814× C =
0 I 0 0

0 0 I 0

0 0 0 I

A 0 0 I

×


0 0 I 0

I 0 0 0

0 0 0 I

0 I 0 0

×


0 I 0 0

0 0 I 0

0 0 0 I

I 0 0 A

 =


0 I 0 0

0 0 I 0

0 0 0 I

I 0 0 I

×


0 0 A 0

I 0 0 0

0 0 0 I

0 I 0 0

×


0 I 0 0

0 0 I 0

0 0 0 I

I 0 0 A

 =


0 I 0 0

0 0 I 0

0 0 0 I

I 0 0 I

×


0 0 I 0

I 0 0 0

0 0 0 I

0 I 0 0

×


0 I 0 0

0 0 I 0

0 0 0 A

I 0 0 A

 =


I 0 0 0

0 0 0 I

0 I 0 0

0 I I 0

×


0 I 0 0

0 0 I 0

0 0 0 A

I 0 0 A

 . (9)

Let x = (x3, x2, x1, x0) and y = (y3, y2, y1, y0) be the
inputs and outputs of the following matrix; i.e. y =
xN :

N =


0 I 0 0

0 0 I 0

0 0 0 A

I 0 0 A

 .

The explicit relations between x and y are

N :


y0 = (x0 ⊕ x1)A,

y1 = x2,

y2 = x3,

y3 = x0.

(10)

By our proposed implementation method, the imple-
mentation cost of C∗× 2814×C is 2m+ 2a XORs for
m-bit inputs, where a is the implementation cost of A.
By equations (9) and (10), the implementation cost of
C∗ × 2814×C reduces to 2m+ a XORs. If we choose
A from (5), then the MDS matrices produced by M5

will take 35 XORs. As stated before, for 5 ≤ m ≤ 8,
there are 240, 2160, 20160 and 93600 invertible matri-
ces A ∈ Mm(F2) with 1 XOR implementation cost,
such that I ⊕ A3 and I ⊕ A7 are invertible. So, the
implementation cost of M5 for m = 8, takes 67 XORs.
The implementation of the inverse of C∗ × 2814× C
is improved in the same manner as (9); the only
difference is that we need A−1. Fortunately, the im-
plementation cost of any binary 1 XOR matrix equals
to its inverse. Therefore, the implementation cost of
M−15 is also reduced to 35 and 67 XORs for m = 4, 8,
respectively.

Since the lightest 4× 4 MDS matrices (up to now)
are presented in the current paper and [16], we briefly
explain the differences of the search strategies. In gen-
eral, the authors of [16] follow the global optimiza-
tion of MDS matrices rather than the optimization
of coefficients. They use only three linear operations
in the construction of MDS diffusion layers: XOR of
two words, linear mapping on a word, and reusing a
register. Starting from the identity mapping, a search
algorithm (based on the Dijkstra algorithm) is applied
to add one of the three mentioned linear mappings to
the previous ones until it finds an MDS matrix with
optimum implementation cost and some conditions
on the coefficients. The conditions on the coefficients
come from the way of checking the MDS property
based on the fact: a matrix with coefficients in a com-
mutative ring is MDS if and only if all of its minors are
invertible. In contrast, our strategy to find lightweight
4 × 4 MDS matrices is a smart search based upon
Theorem 3 and Corollary 1. Characterization of the
MDS property of a family of 4 × 4 matrices in The-
orem 3 and Corollary 1 guarantees that the product
of sparse recursive and binary matrices leads to an
optimization in implementation cost of the classical re-
cursive MDS matrices. So, we extend the search space
to verify the MDS property of matrices constructed
from the production of sparse recursive and binary
matrices, alternatively. It is obvious that investigating
all matrices in this space is infeasible due to lack of
enough time. However, a case study on the mentioned
class of matrices leads to some efficient MDS matrices
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which are reported in Table 2. The presented results
in Table 2 and the time we spent to achieve them give
a good indication that more investigation on this type
of matrices may produce better results in lightweight
MDS matrices than the existent ones.

5 Conclusion

In this paper, we propose new families of lightweight
4×4 MDS matrices with respect tom-bit inputs based
on the product of binary and companion matrices.
This method leads to the construction of lightweight
MDS matrices such that the implementation cost of
them and their corresponding inverses are equal. The
lightest resultant MDS matrices and their inverses
need 8m+ 3 XORs for m = 4, 5, 6, 7, 8.

In the case of m = 4, which is more appropriate
for constrained hardware-oriented platforms, the pro-
vided 4× 4 MDS matrices need 35 XORs for imple-
mentation, which is the same as the lightest existent
ones.
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trices with lightweight circuits. IACR Trans.
Symmetric Cryptol., 2018(2):48–78, 2018.

[17] Ruoxin Zhao, Baofeng Wu, Rui Zhang, and Qian
Zhang. Designing optimal implementations of
linear layers (full version). Cryptology ePrint
Archive, Report 2016/1118, 2016.

[18] Joan Daemen and Vincent Rijmen. The Design of
Rijndael: AES - The Advanced Encryption Stan-
dard. Information Security and Cryptography.
Springer, 2002.

ISeCure



46 4× 4 MDS Matrices for Hardware-Oriented Cryptographic Primitives — A. Mahmoodi Rishakani et al.

[19] S. Ling and C. Xing. Coding Theory: A First
Course. Cambridge University Press, 2004.

[20] Mario Blaum and Ron M. Roth. On lowest density
MDS codes. IEEE Trans. Information Theory,
45(1):46–59, 1999.

[21] Daniel S. Silver Ivan Kovacs and Susan G.
Williams. Determinants of commuting-block ma-
trices. The American Mathematical Monthly,
106(10):950–952, 1999.

Akbar Mahmoodi Rishakani re-
ceived his B.S. and M.S. degrees in
pure mathematics from Shahid Be-
heshti University in 2005 and 2008,
respectively. He is now Ph.D. stu-
dent of mathematical cryptography
in Shahid Rajaee Teacher Training

University under the supervision of Prof. Hamid Reza
Maimani and Prof. Nasour Bagheri. His current re-
search interests include information security, cryptol-
ogy and combinatorics.

Mohammad Reza Mirzaee
Shamsabad was born in 1983 in
Iran. He received his B.S. in applied
mathematics in 2006 from Azad
University, his M.S. in pure mathe-
matics in 2010 from Shahid Bahonar
University. He is now a candidate of

Ph.D. in mathematical cryptography in Shahid Be-
heshti University under supervision of Prof. Hossein
Hajiabolhassan.

SeyedMojtabaDehnavi was born
in 1975 in Iran. He received his B.S. in
applied mathematics and hardware
engineering in 2001 from Iranian Uni-
versity of Science and Technology, his
M.S. in pure mathematics in 2004
from Amir Kabir University of Tech-

nology, and his Ph.D. in mathematical cryptography
in 2015 from Kharazmi University under supervision
of Prof. Hamid Reza Maimani.

MohammadAminAmiri received
the M.S. and Ph.D. degrees in elec-
tronics from Iran University of Sci-
ence and Technology (IUST), Tehran,
Iran, in 2004 and 2011 respectively.
In 2013, he joined the Electrical En-
gineering Department as an assistant

professor at Malek Ashtar University of Technology,
Tehran, Iran. His current research interests include
digital system design and implementation, fault toler-
ant design and secure system design.

Hamid Reza Maimani received
the M.S. degree in mathematics in
1981 from the Teacher Training Uni-
versity of Tehran, Iran, and the
Ph.D. degree in mathematics (combi-
natorics) in 1986 from Tehran Univer-
sity,Tehran, Iran. He joined Shahid

Rajaee Teacher Training University in September
1986, where he is now a Professor in the department
of mathematical sciences. His current research inter-
ests include graph theory, coding, cryptography and
combinatorics.

Nasour Bagheri is an associate pro-
fessor at electrical engineering depart-
ment, Shahid Rajaee Teacher Train-
ing University, Tehran, Iran. He is
the author of more than 60 articles
on information security and cryptol-
ogy. Homepage of the author is avail-

able at: https://www.srttu.edu/english-cv-dr-

bagheri/.

ISeCure

https://www.srttu.edu/english-cv-dr-bagheri/
https://www.srttu.edu/english-cv-dr-bagheri/

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Paper Organization

	2 Preliminaries
	2.1 Notations
	2.2 Definitions

	3 Characterization of a New Family of 4 4 MDS Matrices
	4 The Lightest 4 4 MDS Matrices 
	4.1 The Improved Implementation Cost of M_5 in Table 2

	5 Conclusion

