
ISeCure
The ISC Int'l Journal of
Information Security

January 2018, Volume 10, Number 1 (pp. 63–70)

http://www.isecure-journal.org

Short Paper

A Decentralized Online Sortition Protocol
Rasoul Ramezanian 1,∗, and Mohsen Pourpouneh 2

1Ferdowsi University of Mashhad, Department of Mathematical Sciences, Mashhad, Iran
2Sharif University of Technology, Department of Mathematical Sciences, Tehran, Iran

A R T I C L E I N F O.

Article history:
Received: 1 November 2017

First Revised: 29 December 2017

Last Revised: 15 January 2018

Accepted: 25 January 2018

Published Online: 31 January 2018

Keywords:
Sortition, Protocols, Mechanism
Design.

Abstract

Sortition is widely used in social and economic mechanisms whenever it is
required to choose one of the participants at random in a fair manner. On the
other hand, by growth of the Internet, social and economic mechanisms are
required to perform online sortition procedures in such a way that users can
trust them. We propose a novel online sortition protocol, which is decentralized,
and the winner of the sortition is chosen with the aid of all participants. In
the real life, the sortition takes place via the lottery machine, which satisfies
fairness, randomness, non-repudiation and openness. We argue that our
proposed protocol also satisfies all these properties.

c© 2018 ISC. All rights reserved.

1 Introduction

S ortition is the process of making random choices
and it is used in competitions (such as determining

which teams must play against each other in a tour-
nament), markets (such as determining the winner of
a lottery), and economic mechanism (such as those
used in random probability mechanism [1, 2]). In real
world, the sortition could simply be done using a lot-
tery machine (Figure 1). As this process can be done
in front of all participants, almost every participants
can be assured about the fairness, randomness, non-
repudiation, and openness properties of the process.
However, as the number of participants increases, us-
ing a lottery machine becomes almost impossible.

There are many applications for sortition protocols.
One of them is the lottery procedure that the banks
use in order to determine the winner. Also, there

∗ Corresponding author.
Email addresses: rramezanian@um.ac.ir(R. Ramezanian),
mohsen.pourpoune1@student.sharif.ir(M. Pourpouneh)
ISSN: 2008-2045 c© 2018 ISC. All rights reserved.

are many online websites that require to use the
sortition procedure. Sortition protocols are also widely
used in market and economic mechanisms [3–6] as
randomized mechanisms. In a general mechanism
design problem, the designer aims to satisfy three
notions of truth-telling, fairness, and efficiency. To
satisfy fairness, almost all mechanisms use lottery
and online sortition protocols is a necessary tools to
apply fair mechanisms in electronic markets.

An immediate solution is to use computers (i.e., a
centralized approach) for generating random numbers,
like using a pseudo random number generator. The
problem with this solution is that the participants
might not believe in the fairness and correctness of the
algorithm that is used for generating random numbers.
Also, it might be the case that the code is algorithm is
coded in such a way that it always generates numbers
within an specific interval, so that always participant
with specific numbers are announced as the winners.

Decentralization is the process of distributing pow-
ers, credits, decision, etc. without using a central au-
thority. As a method in designing of protocols, decen-

ISeCure

64 A Decentralized Online Sortition Protocol — R. Ramezanian, and M. Pourpouneh

Figure 1. A lottery machine

tralization is becoming more and more popular in the
world. This is a new method for constructing scalable
and multi agent applications. Block chain is a famous
example of a decentralized protocol and cryptocur-
rencies is one of the applications of block chain. De-
centralized protocols 1 are more flexible, transparent,
distributed, and resilient.

In this paper, we propose a sortition protocol which
allows one to determine the winner in a decentralized
manner. That is the winner is chosen in such a way
that “nobody and everybody” chooses him. In words,
there exists no specific participant who chooses the
winner and all the participants contribute in deter-
mining the winner. We propose a protocol which can
carry out a secure sortition over the world wide web
in such a way that it satisfies several desired proper-
ties. The protocol is such that the winner is chosen
with the aid of all participants, and all the partici-
pants can check the fairness and true randomness of
the output. Moreover, all the participants are assured
about the non-repudiation, and openness properties
of the protocol.

The main idea of the proposed decentralized sor-
tition protocol for two participants A0 and A1 is as
follows: First, each participant secretly generates a
random bit. Let b0 and b1 denote the random bit gen-
erated by A0 and A1, respectively. Set b = b0 ⊕ b1.
Now, if b = 0, then A0 is announced as the winner,
and if b = 1 then A1 is announced as the winner.
In this way, the winner is chosen in a decentralized
manner.

2 Related Work

In the literature, there are some few sortition proto-
cols which tries to satisfy the desired properties of
the real world sortition process.

One of the most well known protocols in this regard,
is the secure coin flipping protocol initially suggested
by Manuel Blum [10]. The main concern in a coin
tossing protocol is the prevention of generating a bias

1 One can refer to [7–9] for more examples of the applications
based on the decentralization solution.

output. In this protocol, two agents are about to toss
a coin over the phone in such a way that it is fair.
The proposed protocol guarantees that both agents
will pick their sequence of bits at random, and that
non of them knows what sequence of bits the other
one is using. The idea of coin-tossing can be extended
to multiparty protocols. In [11], it is shown that if
more than half of the parties are honest, then we can
have protocols with negligible bias. Also, in [12] it is
shown that when at least half of the parties might be
malicious then every protocol of r round will have a
bias of Ω(1/r).

An electronic sortition protocol is proposed in [13]
where they aimed to find a fair order in a group. Their
protocol satisfies openness, randomness, and fairness
properties. In order to achieve these properties, they
use digital signature, public key cryptography, and a
disturbance technique. In comparison, our protocol
is less complicated, and also it is decentralized.

In [14] the authors argue that the security require-
ments of online lotteries are similar to those of online
voting. They develop a sortition protocol which does
not rely on a trusted third party, and the random
process is distributed to all players using the protocol.

In [15] a lottery protocol is introduced. They intro-
duce a denial of service attack to the protocol. The
attack takes place if an agent does not reveal his se-
cret message. In our revised protocol (Section 5) we
came up with a solution to prevent this issue. Also,
the work in [16] is based on a delaying function, which
prevents computationally-bounded adversaries from
cheating. Although, their proposed lottery scheme is
vulnerable to the denial of service attack.

In [17] the authors propose an E-lottery scheme,
based on verifiable random functions [18]. The pro-
tocol does not rely on a trusted third party. Each
participant sends a ticket to the dealer and then he
links all the tickets with a hash function. The result
generation phase, uses a verifiable random function.
In the final step the winning player reveals his keys
and claims his prize.

3 Properties of the Sortition Protocol

There are several properties that a real life sortition
procedure satisfies. In this section we first recall some
of these properties. Later, we will prove that our
online protocol also satisfies these properties.

• Fairness: A sortition protocol satisfies fairness
if an only if all the participants have access to
the same information. In the real life sortition
process, since all participants are present and
see the actual procedure, this property is simply
satisfied.

ISeCure

January 2018, Volume 10, Number 1 (pp. 63–70) 65

• Randomness: The result of the sortition pro-
tocol is random and can not be predicted. Also,
all the participants have equal chance to be cho-
sen by the protocol. In the real life sortition
procedure, it is believed by the nature rules
that the chance of all the balls in the lottery
machine is the same.
• Openness: The process of the sortition and
the state of the system is open to all the par-
ticipants. In the real life sortition process, the
openness property is satisfied because the pro-
cess takes place face to face.
• Unforgeability: Nobody can forge the actions
of the participants and the final result of the
system. In the real life sortition process, since
participants believe the organizers, this prop-
erty is satisfied.
• Non-repudiation: The participants can not

deny their actions.
• Verifiability: All the participants can verify

the result of the system. It is obvious that this
property is satisfied in the real life sortition
procedure.
• Anti-collusion: No one can collude with others

to cheat in the sortition outcome. In the real life
sortition process, this is due to the fact that the
organizer is a trusted third party who checks
that every participant writes his own name on
the ball 2 .

4 Protocol Specification

Our sortition protocol P consists of two phases: ini-
tialization and execution. In the initial phase we sup-
pose that there is an sortition Executer 3 E, and a
set of participants P = {P1, P2, . . . , Pn} such that
n = 2k for some natural number k. We assume that
each participant i has a pair of public key/private
key (pki, ski). We also assume that bulletin board
where the executer and all the participants can pub-
licly broadcast their messages on it. There are five
rounds in the execution phase.

• Round 1: The executer E, generates a session
Identifier 4 SID and assigns a unique ISi, which
is an string in {0, 1}k, to each participants i as
his identity number. The executer broadcasts
SID and ISi together with the names of each
participant as the rows of the bulletin board
(See Table 1).

2 The agents might have incentive to write the same name on
the paper so that they have higher chance of winning.
3 The executer can be regarded as the owner of the website
which is about to perform to sortition for some purpose.
4 The session identifier is used in case when there are several
parallel sessions, and to identify that all the random strings
belong to the ongoing sortition.

• Round 2: Each participants Pi generates a uni-
formly random string wi ∈ {0, 1}k. Then he
signs the triple (wi, SID, ISi) and concatenates
it with a time stamp T and his name Pi. Fi-
nally, he encrypts the whole message using
his public key and sends the message R2

i :=
{{(wi, SID, ISi)}ski

, T, Pi}pki
to the bulletin

board (See Table 2).
• Round 3: Each participant decrypts its message

in the second round (and publishes all the nec-
essary information for the the verification of its
correctness such as the value of the used ran-
domness), and broadcasts it in front of its name
in the bulletin board. Since everyone has access
to all the public keys, each participant can ver-
ify that if the messages published at round 2
are exactly the same as those encrypted in the
third round (See Table 3).
• Round 4: Since everybody has access to all the

public keys each participant can obtain wis. On
the fourth round, the executer broadcasts all
the wis in front of the name of each participant.
(see Table 4).
• Round 5: The executer, applies the XOR func-
tion on all the lottery strings {wi}. Then, it
broadcast it in the public table (See Table 5).

w = w1 ⊕ w2 ⊕ · · · ⊕ wn

Finally, the winner of the sortition is the participant
whose identity number is the same as w. That is, the
winner is the participant with ISj = w.

There are a few remarks about the protocol that
ought to made.

• We can slightly modify the protocol such that
the role of the executer is less demanding. To
do so, each participant i can refer to the lottery
website and suggest an ISi for himself. The ISi

is assigned to him if it is a valid one (i.e., if
ISi ∈ {0, 1}k), and it is not assigned to someone
else so far.
• The timestamp T is used for those cases in
which the lottery has a time limit for participa-
tion. That is, we might only use those strings
that are generated within the last hour, or days.
• In the second round we require each agent to
encrypt his message and decrypt it later in
the third round. The reason is that we want
all the participants to generate and publish
their lottery strings all at the same time (in
the situation that no participant is aware of the
lottery strings of others when he is generating
his own lottery string).
• In our protocol we require each agent to be as-
signed an ISi. The reason is that Pi is the ac-

ISeCure

66 A Decentralized Online Sortition Protocol — R. Ramezanian, and M. Pourpouneh

Table 1. First round of the execution part

Round 1:
Broadcast by the

executer
Round 2: Round 3: Round 4: Round 5:

E SID − − −

P1 IS1 − − − −

P2 IS2 − − − −
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pn ISn − − − −

Table 2. Second round of the execution part

Round 1:
Broadcast by the

executer
Round 2: Broadcast by each participant Round 3: Round 4: Round 5:

E SID − − − −

P1 IS1 {{(w1, SID, IS1)}sk1
, T, P1}pk1

− − −

P2 IS2 {{(w2, SID, IS2)}sk2
, T, P2}pk2

− − −
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pn ISn {{(wn, SID, ISn)}skn , T, Pn}pkn − − −

Table 3. Third round of the execution part

Round 1:
Broadcast by the

executer

Round 2:
Broadcast by

each
participant

Round 3: Broadcast by each participant Round 4: Round 5:

E SID − − − −

P1 IS1 R2
1 {(w1, SID, IS1)}sk1

, T, P1 − −

P2 IS2 R2
2 {(w2, SID, IS2)}sk2

, T, P2 − −
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pn ISn R2
n {(wn, SID, ISn)}skn , T, Pn − −

Table 4. Fourth round of the execution part

Round 1:
Broadcast by the

executer

Round 2:
Broadcast by

each
participant

Round 3: Broadcast by each participant
Round 4:

Broadcast by
the executer

Round 5:

E SID − − − −

P1 IS1 R2
1 {(w1, SID, IS1)}sk1

, T, P1 w1 −

P2 IS2 R2
2 {(w2, SID, IS2)}sk2

, T, P2 w2 −
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pn ISn R2
n {(wn, SID, ISn)}skn , T, Pn wn −

Table 5. Fifth round of the execution part

Round 1:
Broadcast by the

executer

Round 2:
Broadcast by

each
participant

Round 3: Broadcast by each participant
Round 4:

Broadcast by
the executer

Round 5:
Broadcast by
the executer

E SID − − − w

P1 IS1 R2
1 {(w1, SID, IS1)}sk1

, T, P1 w1 w

P2 IS2 R2
2 {(w2, SID, IS2)}sk2

, T, P2 w2 w

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Pn ISn R2
n {(wn, SID, ISn)}skn , T, Pn wn w

ISeCure

January 2018, Volume 10, Number 1 (pp. 63–70) 67

tual identity 5 of the participant whereas ISi is
a number in the range of 0 to 2k, which maps
the agents to their identity. Also, as each agent
generates a string in {0, 1}k this will guaran-
tee that the output of the sortition protocol is
definitely among the participants.
• In this protocol we used signature and encryp-

tion schemes, so that we can keep the protocol
simple and use the most basic schemes of cryp-
tography. However, it should be noted that the
one can use commitment schemes instead of sig-
nature and encryption scheme in our proposed
protocol.

Theorem 1. The sortition protocol P satisfies
fairness, randomness, openness, unforgeability, non-
repudiation, verifiability and anti-collusion properties.

Proof. We discuss that the protocol satisfies these
properties.

• Fairness: It is easily seen that all the partici-
pants have access to equal information. In every
round the bulletin board is publicly accessible,
and everyone knows his private key. Also all
the agents learn the lottery strings in round
4. Hence, all the agents have access to all the
necessary information.
• Randomness: Since each wi is randomly selected

and w is the XOR 6 of all the wis, the protocol
satisfies randomness property.
• Openness: It is trivial.
• Unforgeability: On the second round, each par-

ticipant Pi freely can generate a random string
wi, and signs {wi, SID, ISi}.

R2
i = {{(wi, SID, ISi)}ski

, T, Pi}pki

Because of the signature, we are certain that
the string wi is generated by the participant Pi.
Also, due to the time stamp T we are assured
that the random number is fresh. Furthermore,
due to the session ID, SID, the participants are
assured that the lottery string belongs to the
current session.
• Non-repudiation: Since the message {wi, SID,
ISi}ski

, is signed by the participant Pi and
every participants have access to public keys
they can verify that the messages in the third
round are the decryption of the messages in the
second round. Therefore, no one can deny his
the random string wi.
• Verifiability: In the third round all the agents

can verify the true decryption of messages in the

5 Like his first name and his last and his social identity number.
6 Note that the XOR operation preserves the uniform distri-
bution.

second round. Also, by use of public keys they
can find all the wis, and verify the outcome.
• Anti-Collusion: Suppose A is the set of all par-
ticipants and the members of set I (A col-
lude with each other. (Since everyone knows
all the executer’s information we can omit S
from the collusion party.) Let J = A \ I, wI =⊕
{wi|Pi ∈ I} and wJ =

⊕
{wj |Pj ∈ J}. Since

wJ is a random string in {0, 1}k then wI ⊕ wJ

is also random. This proves the anti-collusion
property.

5 The Revised Protocol

In Section 4 we assumed the number of participant
to be a power of 2, which restricts the use case of our
protocol. In this section we propose a revised version
of our protocol in such a way that works with any
arbitrary number of participants.

Suppose that m is the number of participants and
2k−1 ≤ m ≤ 2k, for some natural number k. If run
the protocol of Section 4, then the participants will
generate random strings wi ∈ {0, 1}k. Since m is less
than 2k there might be cases in which there exists
no ISj such that ISj = w1 ⊕ w2 ⊕ · · · ⊕ wm. To
overcome this issue we propose a revised protocol P.
We slightly change the protocol P in the first, third
and fifth rounds.

• Round 1: The executer generates a permuta-
tion set of strings B = {B(1), B(2), . . . , B(2k)}
where each B(i) is a different string in
{0, 1}k. The executer publishes the message
{SID, {{SID, B}ske

, T}pke
} on the bulletin

board in first round where SID is the session
ID. Note that (ske, pke) are the key pairs of
the executer. The executer also generates the
unique identity numbers, that is ISi ∈ {0, 1}k
for each participant i (See Table 6).
• Round 2: No change is required for this round.
• Round 3: The executer also decrypts its mes-

sage in Round 1. Therefore the signed message
{SID, B}ske , is revealed in this round.
• Round 4: No change is required for this round.
• Round 5: Each participant (including the exe-
cuter) can compute w = w1 ⊕ w2 ⊕ · · · ⊕ wm.
If there exists an ISj , such that ISj = w, then
the participant Pj is chosen as the winner. If
not, the each participant decrypts the message
SID, {{SID, B}ske

, T}pke
, and computes c1 =

B(1)⊕ w as a potential winner. If there exists
ISj such that ISj = c1, the participant Pj is
chosen as the winner, otherwise the string c2 =
B(2)⊕w must be computed, and if there exists
ISj such that ISj = c2, the participant Pj is

ISeCure

68 A Decentralized Online Sortition Protocol — R. Ramezanian, and M. Pourpouneh

Table 6. First round of the execution part when number of agents is arbitrary

Round 1: Broadcast by the
executer Round 2: Round 3: Round 4: Round 5:

E SID, {{SID, B}ske , T}pke − − − −

P1 IS1 − − − −

P2 IS2 − − − −
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pm ISm − − − −

Table 7. Third round of the execution part when number of agents is arbitrary

Round 1: Broadcast by the
executer

Round 2:
Broadcast by

each
participant

Round 3: Broadcast by each
participant Round 4: Round 5:

E SID, {{SID, B}ske , T}pke − {SID, B}ske − −

P1 IS1 R2
1 {(w1, SID, IS1)}sk1

, T, P1 − −

P2 IS2 R2
2 {(w2, SID, IS2)}sk2

, T, P2 − −
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pm ISm R2
m {(wm, SID, ISm)}skm , T, Pm − −

Table 8. Fifth round of the execution part when number of agents is arbitrary

Round 1: Broadcast by the
executer

Round 2:
Broadcast by

each
participant

Round 3: Broadcast by each
participant

Round 4:
Broadcast by
the executer

Round 5:
Broadcast by
the executer

E SID, {{SID, B}ske , T}pke − − − w

P1 IS1 R2
1 {SID, B}ske w1 w

P2 IS2 R2
2 {(w1, SID, IS1)}sk1

, T, P1 w2 w

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Pm ISm R2
m {(wm, SID, ISm)}skm , T, Pm wm w

chosen winner. This process continues until one
we can find some ci which corresponds to the
identity string ISj for some participants Pj .

The output w = w1 ⊕ w2 ⊕ · · · ⊕ wm is a uniform
distribution on {0, 1}k and no participant can predict
the final output of the protocol before the third round.
Since {w ⊕ B(i) | 0 ≤ i ≤ 2k − 1} = {0, 1}k and w
is uniformly distributed in {0, 1}k we have each ci is
uniformly distributed in {0, 1}k.
Theorem 2. The revised sortition protocol satisfies
fairness, randomness, openness, unforgeability, non-
repudiation, verifiability and anti-collusion properties.

Proof. The proof of fairness, openness, unforgeability,
non-repudiation and anti-collusion are similar to the
proof of the first version of the protocol. Hence, we
only prove the following properties:

• Randomness: Since each wi is randomly selected
by participant i, the values

⊕
wi ⊕ B(j) are

random for 0 ≤ j ≤ 2k.
• Verifiability: In the third round all the partici-

pants can verify the true decryption of messages
in the second round, and the executer message
in the first round. Also, by use of public keys

they can find all the wis, and determine the
outcome.

In the third round of protocol P, if a participant re-
fuses to decrypt his message in the second round, then
the protocol will never terminate. Thus, P is vulnera-
ble to denial of service attack. In the revised protocol
P, we can set a timeout for publishing message in
each round and if a player refuses to send a message
we simply will omit him from the protocol. This will
not affect our procedure since the revised protocol P
is applicable to any number of participants.

6 Conclusion

We proposed a decentralized sortition protocols and
argued that our protocol satisfies fairness, random-
ness, non-repudiation and openness properties. In
comparison to other several protocols that exist in
the literature, our protocol is simpler to understand
and execute. It should be noted that one can use
modular summation instead of XOR, here we used
XOR to keep the protocol as simple as possible.

Although the way that we recognize the winner

ISeCure

January 2018, Volume 10, Number 1 (pp. 63–70) 69

of the sortition is decentralized, but our protocol
requires an executer to control the protocol. This is
also natural in the sense that the executer can be
considered as the bank owner or the website that is
performing the sortition. For further works, we aim to
propose a new decentralized sortition protocol where
it is based on block chain and also the winner is
chosen by contribution of all agents. To do this aim,
we need to add a proof of work to manage messages of
agents as blocks and prevents double sending attacks.

References

[1] Atila Abdulkadiroğlu and Tayfun Sönmez. Ran-
dom serial dictatorship and the core from ran-
dom endowments in house allocation problems.
Econometrica, 66(3):689–701, 1998.

[2] Yeon-Koo Che and Fuhito Kojima. Asymptotic
equivalence of probabilistic serial and random
priority mechanisms. Econometrica, 78(5):1625–
1672, 2010.

[3] Noam Nisan and Amir Ronen. Algorithmic mech-
anism design. In Proceedings of the thirty-first
annual ACM symposium on Theory of comput-
ing, pages 129–140. ACM, 1999.

[4] Kenneth J Arrow, Amartya Sen, and Kotaro
Suzumura. Handbook of social choice and welfare,
volume 2. Elsevier, 2010.

[5] Felix Brandt, Vincent Conitzer, Ulle Endriss,
Ariel D Procaccia, and Jérôme Lang. Handbook
of computational social choice. Cambridge Uni-
versity Press, 2016.

[6] Atila Abdulkadiroglu and Tayfun Sönmez.
School choice: A mechanism design approach.
The American Economic Review, 93(3):729–747,
2003.

[7] Rafik Makhloufi, Grégory Bonnet, Guillaume
Doyen, and Dominique Gaïti. Decentralized ag-
gregation protocols in peer-to-peer networks: a
survey. In IEEE International Workshop on
Modelling Autonomic Communications Environ-
ments, pages 111–116. Springer, 2009.

[8] JA Alvarez Bermejo, MA Lodroman, and
JA Lopez-Ramos. A decentralized protocol for
mobile control access. The Journal of Supercom-
puting, 70(2):709–720, 2014.

[9] Airlie Chapman, Eric Schoof, and Mehran Mes-
bahi. Semi-autonomous networks: theory and
decentralized protocols. In Robotics and Automa-
tion (ICRA), 2010 IEEE International Confer-
ence on, pages 1958–1963. IEEE, 2010.

[10] Manuel Blum. Coin flipping by telephone a
protocol for solving impossible problems. ACM
SIGACT News, 15(1):23–27, 1983.

[11] Tal Rabin and Michael Ben-Or. Verifiable secret
sharing and multiparty protocols with honest
majority. In Proceedings of the twenty-first an-

nual ACM symposium on Theory of computing,
pages 73–85. ACM, 1989.

[12] Richard Cleve. Limits on the security of coin
flips when half the processors are faulty. In Pro-
ceedings of the eighteenth annual ACM sympo-
sium on Theory of computing, pages 364–369.
ACM, 1986.

[13] Biao He and Yu Wei. Electronic sortition. In The
2009 International Symposium on Intelligent In-
formation Systems and Applications (IISA 2009),
page 203, 2009.

[14] Stéphane Grumbach and Robert Riemann. Dis-
tributed random process for a large-scale peer-
to-peer lottery. In IFIP International Confer-
ence on Distributed Applications and Interopera-
ble Systems, pages 34–48. Springer, 2017.

[15] Arjen K Lenstra and Benjamin Wesolowski. A
random zoo: sloth, unicorn, and trx. IACR Cryp-
tology ePrint Archive, - -:366, 2015.

[16] David M Goldschlag and Stuart G Stubblebine.
Publicly verifiable lotteries: Applications of de-
laying functions. In International Conference on
Financial Cryptography, pages 214–226. Springer,
1998.

[17] Sherman SM Chow, Lucas CK Hui, Siu-Ming
Yiu, and KP Chow. An e-lottery scheme us-
ing verifiable random function. In International
Conference on Computational Science and its
Applications, pages 651–660. Springer, 2005.

[18] Silvio Micali, Michael Rabin, and Salil Vadhan.
Verifiable random functions. In Foundations of
Computer Science, 1999. 40th Annual Sympo-
sium on, pages 120–130. IEEE, 1999.

Mohsen Pourpouneh was born
in 1989 in Isfahan. He got his
B.S. and M.S. in Computer Science,
from Shahid Beheshti University and
Tehran University, respectively. He
started his career as a Ph.D. student
at Sharif University of Technology.

His research interest includes formal method, elec-
tronic voting protocols, and multi-agent systems.

Rasoul Ramezanian was born in
Mashhad in 1979. He got his B.S.
and M.S. in Mathematics. In 2008, he
graduated from a Ph.D. program at
Mathematical Sciences Department
of Sharif University of Technology.
He is an assistant professor at the

faculty of Mathematical Sciences at Ferdowsi Univer-
sity of Mashhad. His research interests include formal
method, specifying and verifying security protocols,
multi-agent systems, and process algebra.

ISeCure

	1 Introduction
	2 Related Work
	3 Properties of The Sortition Protocol
	4 Protocol Specification
	5 The Revised Protocol
	6 Conclusion

