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A B S T R A C T

In this paper, we propose a new framework for joint encryption encoding

scheme based on polar codes, namely efficient and secure joint secret key

encryption channel coding scheme. The issue of using new coding structure,

i.e. polar codes in Rao-Nam (RN) like schemes is addressed. Cryptanalysis

methods show that the proposed scheme has an acceptable level of security

with a relatively smaller key size in comparison with the previous works. The

results indicate that the scheme provides an efficient error performance and

benefits from a higher code rate which can approach the channel capacity

for large enough polar codes. The most important property of the proposed

scheme is that if we increase the block length of the code, we can have a higher

code rate and higher level of security without significant changes in the key

size of the scheme. The resulting characteristics of the proposed scheme make

it suitable for high-speed communications, such as deep space communication

systems.

c© 2017 ISC. All rights reserved.

1 Introduction

T he main challenges of satellite communications
are in short security, error performance, energy

efficiency and implementation costs. A solution to the
shortcomings raised from these challenges to some ex-
tent is using joint encryption-channel coding scheme
appropriately [1]. In 1978, McEliece proposed a public-
key cryptosystem based on algebraic coding theory [2]
that revealed to be very secure. The McEliece cryp-
tosystem is based on the difficulty of decoding a large
linear code, which is known to be an NP-complete
problem [3]. This system is two or three orders of mag-
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nitude faster than RSA. A variant of the McEliece
cryptosystem, according to Niederreiter [4], is even
faster. The McEliece scheme employs probabilistic
encryption [5]. However, because of the large size of
the public key and a low code rate, this cryptosystem
is not used widely. To remove these two imperfections
in McEliece cryptosystem, several modifications are
presented [6–10], so far.

In 1984, Rao used the McEliece public-key cryp-
tosystem as a symmetric key cryptosystem [11]. Rao
and Nam modified this cryptosystem to reduce the
key size and increase the information rate [12]. How-
ever, this cryptosystem is insecure against chosen
plaintext attacks [13, 14]. In the last decade, capac-
ity approaching codes have been widely used. Turbo
codes have been employed in two different symmetric-
key secure channel coding schemes in [15, 16]. Some
other schemes have been proposed to use Low Den-
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sity Parity Check (LDPC) codes in the McEliece-
cryptosystem [10, 17–19]. In [20] Baldi, Bianchi and
Chiaraluce tried to optimize and fill the gap between
the density of the parity check matrices used in QC-
LDPC code-based variants of the McEliece cryptosys-
tem. In [21], the authors have proposed a secret key
encryption scheme based on 1-level QC-LDPC lat-
tices. In [22] the authors employ punctured QC-LDPC
codes obtained from Extended Difference Families
(EDFs). Security analysis shows that if the code em-
ployed is revealed, the scheme remains secure. A se-
cure channel coding scheme proposed in[23] in which
randomly inserts and deletes some bits in a code-
word of a QC-LDPC code and it is shown that the
error performance of the code after the insertions and
deletions is better than a random LDPC code with
similar parameters. Moreover, the idea of applying
non-systematic polar codes in the structure of secure
channel coding schemes is introduced in [24].

Polar codes were introduced by Arikan in 2009 [25].
These are the first low complexity linear block code
which provably achieve the capacity for a fairly wide
class of channels. The original paper of Arikan proved
that these codes can achieve the capacity of binary
symmetric channels as well as arbitrary discrete mem-
oryless channels [26–28]. Some modifications of the
original structure were proposed and it was shown
that these codes are optimal for lossless and lossy
source coding [29–31].

In this paper, we propose a secure channel coding
scheme using polar codes. This scheme is designed to
be secure against the previous known attacks. To the
best of our knowledge, the code rate is much more
than that of the previous schemes, and the key size is
reduced to 1.6kbits, which is lower than that of the
smallest key size of the previously proposed schemes,
to the best of our knowledge (i.e. 2.191Kbits in [22]).
The proposed scheme avoids the weaknesses of Rao-
Nam (RN) scheme. The most important property
of the proposed scheme is that if we increase the
block length of the code, we could have a higher code
rate and a higher level of security without significant
changes in the key size of the scheme. These make
our cryptosystem much more desirable in satellite
communications.

The rest of this paper is organized as follows: In
Section 2 we consider the basic polar code construc-
tion. The new symmetric cryptosystem based on po-
lar codes is addressed in Section 3. Section 4 deals
with the security and the efficiency of the proposed
scheme. Finally, Section 5 concludes the paper.

2 Introduction to Polar Codes

In [32] Shannon proved the achievability part of noisy
channel coding theorem using random-coding. He
showed the existence of a code that achieves capacity.
Polar codes are an explicit construction that achieve
channel capacity with low complexity of encoding
and decoding [25]. This section gives an overview of
channel polarization and polar coding.

2.1 Channel Polarization

The process of channel polarization is a transforma-
tion in which one synthesizes a set of N channels

W
(i)
N : 1 ≤ i ≤ N from N independent copies of a

given binary discrete memoryless channel (B-DMC)
W , such that, as N becomes larger, for all but a
vanishing subset of indices i, the symmetric capacity

terms, I(W
(i)
N ), tend towards 0 or 1 [33]. This process

consists of two dependent steps: channel combining
phase and channel splitting phase.

Channel Combining: In this phase we combine N
copies of DMC W recursively to produce a vector
channel WN : XN → Y N , where N = 2n. Figure 1
shows how to construct channel W2 with the proba-
bility of

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2).W (y2|u2) (1)

Figure 1. The Channel W2.

Figure 2 shows the general form of channel com-
bining, where two copies of WN

2
are combined to

produce the channel WN . The block RN is a per-
mutation operator, known as the reverse shuffle
operation, which converts its inputs sN1 to vN1 =
(s1, s3, . . . , sN−1, s2, s4, . . . , sN ). In fact, polar code
is similar to Reed-Muller (RM) code which is a class
of linear codes [34, 35].

Channel Splitting: Here, we want to split channel

WN to construct N channels W
(i)
N : X → Y N×Xi−1,

defined by the following transition probability

W
(i)
N (yN1 , u

i−1
1 |ui) ,

∑
uN
i+1
∈XN−i

1

2N−1
WN (yN1 |uN1 )

(2)
It can be shown that the generator matrix GN equals
BNF

⊗n for any N = 2n, n ≥ 0, where BN is a
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Figure 2. Recursive construction of WN from two copies of

WN/2.

permutation matrix known as bit reversal and F =1 0

1 1

. Now, we convey two remarkable theorems on

channel polarization.

Theorem 1. [25] For any B-DMC W, the channels

W
(i)
N are polarized in the sense that, for any fixed δ ∈

(0, 1), as N goes to infinity through powers of two,
the fraction of indices i ∈ {1, 2, . . . , N} for which

I(W
(i)
N ) ∈ (1−δ, 1] goes to I(W ) and the fraction for

which I(W
(i)
N ) ∈ [0, δ) goes to 1− I(W ).

Theorem 2. [25] For any B-DMC W with I(W ) >
0, and any fixed R < I(W ), there exists a sequence
of sets AN ⊂ {1, . . . , N}, N ∈ {1, 2, ..., 2n, ...}, such

that |AN |≥ NR and Z(W
(i)
N ) ≤ O(N−5/4) for i ∈

AN .

where Z(W
(i)
N ) denotes the Bhattacharyya param-

eter of channel W
(i)
N .

2.2 Polar Coding

We use the channel polarization to construct polar
codes that achieve channel capacity based on the
idea that we only send data through those channels

W
(i)
N for which Z(W

(i)
N ) is close to 0and equivalently

I(W
(i)
N ) is close to 1.

GN -Coset Codes : This set is a class of block codes,
with the following encoding process:

xN1 = uN1 GN = uAGN (A) + uAcGN (Ac) (3)

where GN is the generator matrix and A is a K-
element subset of {1, 2, ..., N} and uN1 is the input
vector which is divided into two vectors, uA and uAc ,
according to the index set A. The vector uA is known
as the input to the good channels and uAc is the
input to the bad channels. By fixing the index set A,
pointing the information set, and the frozen bits uAc ,
the GN -Coset Code is determined by (N,K,A, uAc),
where K is the code dimension. Polar codes suggest
a particular rule for choosing the index set A which
is the indices of those rows from the generator matrix
which are known as the information set (also called
the indices of good channels).

A Successive Cancellation (SC) Decoder: For aGN -
coset code, the decoder decides on yN1 and estimates
ûN1 as the transmitted data. A block error is occurred
if ûN1 6= uN1 . SC decision functions are similar to ML
decision functions, but these functions consider the
frozen bits as random variables instead of the fixed
bits. However, the loss of performance due to this
suboptimum decoding is negligible and the symmetric
capacity is still achievable. Notice that ML decoding
is an efficient decoding algorithm for short length
codes of polar codes but its complexity is large [25, 36].
The SC decoder generates ûN1 by computing

ûi =

 ui for i ∈ Ac

hi(y
N
1 , û

i−1
1 ) for i ∈ A

(4)

where

hi(y
N
1 , û

i−1
1 ) =

 0, if
W

(i)

N
(yN1 ,û

i−1
1 |0)

W
(i)

N
(yN1 ,û

i−1
1 |1)

≥ 1

1, otherwise
(5)

Code Performance: It can be shown that for any
B-DMC W and any choices of (N,K,A) code the
probability of block error for this code under SC
decoding, Pe(N,K,A, uAc) is bounded as follows:

Pe(N,K,A, uAc) ≤
∑
i∈A

Z(W i
N ) (6)

This suggests that we should choose A from all K-
element subsets of {1, ..., N} such that it minimizes
the right hand side of Equation 6.

Polar Codes: In polar codes the subset A is chosen
such that Z(W i

N ) ≤ Z(W j
N ) for all i ∈ A, j ∈ Ac.

The channels with indices in A and Ac are called
good and bad channels, respectively. The main coding
result is given below.

Theorem 3. [25] For any given B-DMC W and fixed
R < I(W ), the block error probability for polar cod-
ing under successive cancellation decoding satisfies:
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Pe(N,R) = O(N−
1
4 ) (7)

Furthermore, it can be shown that the encoding
and decoding (SC) complexities of polar codes are
both of order O(NlogN)[17]. Therefore, the general
complexity of the system (both encoder and decoder)
for polar codes is less than that of LDPC codes (the
best capacity approaching code before the birth of
polar codes) and this makes the polar codes much
more of practical interests.

3 The Proposed Symmetric Scheme
Based on Polar Codes

In this section, we introduce our proposed secure chan-
nel coding scheme. As the fundamental component of
our scheme, we construct a polar code as described
in Section 2 according to the parameters used for the
channel. For this purpose, we construct the generator
matrix of length N for encoding purpose. Then we
select the indices of bad channels according to the
polar codes construction algorithm, explained in sec-
tion II-B, which determines how to choose the index
set A based on Bhattacharyya parameter. We also
choose the frozen bits randomly. Note that we do not
set the frozen bits as all zero bits As another compo-
nent of the scheme, we choose a random quasi-cyclic
block diagonal permutation matrix P , constructed by
submatrix πl×l as below [17]:

πl×l 0 . . . 0

0 πl×l . . . 0
...

...
. . .

...

0 0 . . . πl×l

 (8)

It is obvious that this method reduces the key size
which we are going to discuss in Section 4.1. As it was
mentioned in Section 2 the code parameters depend
on the channel parameters. So, we randomly select
the values of both frozen bits and the input of some
other bad channels, namely vs, which is given by
inequalities (12) and (13) in Section 4.1 according to
the coding rate, and keep them secret. Note that the
secret key set would be {P, es, uAc , vs}. Even though
by this construction, we distance from the channel
capacity to some extent, we obtain a more reliable
communications as it will be discussed in Section 4.1.

3.1 Encryption-Encoding

For our secure channel coding scheme, the sender
computes

u = (mG+ es)P, (9)

where m is the plaintext message, es is the pertur-
bation vector, and G is the generator matrix of the
polar code.

3.2 Decryption-Decoding

The legitimate receiver receives the following vector:

c′ = (mG+ es)P + ech (10)

Using the secret key {P, es, uAc , vs} he can decrypt
c′ according to the following algorithm:

1. Multiply Equation (1) by P−1 and obtain

c′′ = c′P−1 = mG+ es + echP
−1 (11)

2. Subtract the error vector from Equation (11)
and obtain mG+ echP

−1.

3. Recover m, using SC algorithm with the input
parameters uAc and vs.

Notice that echP
−1 has the same Hamming weight

as that of ech. This is because P−1 = PT is a per-
mutation matrix and does not change the Hamming
weight of the vector.

Thus far, we have developed a secure channel cod-
ing scheme which can be interpreted as a joint sym-
metric encryption-encoding cryptosystem. In the en-
suing part we are going to evaluate the efficiency and
security of the proposed scheme.

4 Efficiency and Security

In this section, we evaluate the efficiency and the
security of the proposed scheme, where we choose
N = 2048.

4.1 Efficiency

The efficiency of the proposed scheme is discussed
from the viewpoints of encryption/decryption com-
plexity, bit error rate, code rate and key size.

4.1.1 Complexity

Here, we discuss the implementation complexity of
the proposed scheme. Since we use the codes with
large block lengths for satellite communications[37],
we should give evidence for applicability of our scheme
with low complexity.

In the proposed scheme there is no precomputation
phase. In the computation phase, the complexity of
the scheme corresponds only to the encoding and
decoding processes. According to Section 2, both
encoding and decoding complexities have the same
order O(NlogN). We observe that the complexity of
the proposed scheme is lower than that of capacity
approaching codes, which is indeed more desirable
for satellite communications.
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4.1.2 Error Performance

As it is mentioned in Section 2, polar codes provably
achieve the capacity of the channel. In [38] Arikan
and Telatar showed that for any rate R < I(W )
and any β < 1

2 , the block error probability is up-

per bounded by 2−N
β

for large enough N . Another
problem is to determine the trade-off between the
rate and the block length for a given error probability
when we use successive cancellation decoder. In our
scheme, because of the finite length of the blocks, we
cannot use a rate equal to the channel capacity. For
example, if the error probability of the BEC is 0.01,
the channel capacity is 0.99 [39]. Thus, from[25] we
know that, for N = 2048, the number of frozen bits
is approximately equal to 21, but in this rate, we do
not have reliable communications. Therefore, the rate
should be reduced to obtain reliability. In [40, 41] the
authors showed that for any BEC, W , with capacity
I(W ), reliable communications require the rates that
satisfy the following inequality:

R < I(W )−N−
1
µ (12)

where N is the block length and µ ≈ 3.627. In other
words, if we want to have reliable communications,
then the block length should be lower bounded by
the following inequality:

N > (
1

I(W )−R
)µ (13)

In the proposed scheme, to make a comparison with
the results obtained in other publications, the block
length is considered to be 2048. Therefore, from Equa-
tion (12), if the coding rate is less than 0.87, a reliable
communication is achieved. From this we can con-
clude that the number of fixed bits is approximately
equal to ((I(W ) − R) × N) ≈ 245. Figure 3 shows
the rate versus reliability trade-off for W using polar
codes with N = 2048.

A comparison between the code rates of different
RN-like secret key schemes with their recommended
code parameters are given in Table 1.

Table 1. Code rate of the new scheme compared with other

RN-like schemes.

scheme code rate

Rao[11] C(1024, 524) 0.51

Rao-Nam [12] C(72,64) 0.89

Struik-Tillburg [42] C(72,64) 0.89

Barbero-Ytrehus [43] C(30,20) over GF(28) 0.66

SobliAfshar-Eghlidos [17] C(2044,1024) 0.5

Proposed Scheme C(2048, 1781) 0.87

Figure 3. Rate vs. reliability for polar coding and SC decoding

at block-lengths N = 211.

4.1.3 Key Size

Using a specific structure, we are able to reduce the
key size to a reasonable level. Here, we discuss the
key size of the proposed scheme. Then we compare
the results with the previous ones.

In the proposed symmetric scheme, the secret key
consists of three components: the frozen bits, the er-
ror vector and the permutation submatrix πl×l. As it
was mentioned in Section 2 and 4.1.2, the number of
frozen bits depends on the channel capacity, which
in our scheme is (|uAc |+|vs|) = 21 + 245 = 266bits,
where uAc and vs indicate the frozen bits and the
fixed bits, respectively. To reduce the key size of this
scheme, we use a certain procedure to store the per-
mutation submatrix πl×l. The number of such per-
mutation matrices is l!. Here, we use an efficient rep-
resentation of this matrix which was first introduced
by Barbero and Ytrehus [43]. By choosing l = 64,
the permutation matrix P consists of 32 submatrices
π64×64(2048 = 32× 64). To store the matrix π64×64
we need 321 bits [43].

As another component of the secret key, the er-
ror vector es has 2048 entries. This vector is gener-
ated using Feedback Shift Registers (FSRs); the seed
to generate such pseudorandom vector must be at
least 1024 bits. These yield the total secret key size
of 1611bits ≈ 1.6Kbits to be exchanged. One may
choose l = 32 or l = 128 and the key size would be
≈ 1.4Kbits and 2Kbits, respectively. A comparison
between the key sizes of various RN-like schemes and
the proposed one is given in Table 2. It is observed
that we are able to achieve a short key size. As we
discuss in Section 4.2, we observe that our scheme
enjoys a high security level.

ISeCure



116 An Efficient Secure Channel Coding Scheme based on Polar Codes — Mafakheri et al.

Table 2. Key size of the new scheme compared with other

RN-like schemes

Scheme Code Key Size

Rao [11] C(1024, 524) 2Mbits

Rao-Nam [12] C(72,64) 18Kbits

Struik-Tillburg [42] C(72,64) 18Kbits

Barbero-Ytrehus [43] C(30,20) over GF(28) 4.9Kbits

SobliAfshar-Eghlidos [17] C(2044,1024) 2.5Kbits

Esmaeli-DG [22] C(2048, 1536) 2.2Kbits

Proposed Scheme C(2048, 1781) 1.6Kbits

It is noteworthy that by increasing the code length
N , not only the key size of the proposed scheme re-
mains constant, but also the security of the scheme
increases. Thus, from Equation 12, one concludes that
by increasing the code length, the code rate is in-
creased without any change in the key size. As stated
previously, this property is much more desirable in
satellite communications.

4.2 Security

In this section, we discuss the security of the proposed
scheme including the attacks already applied to the
previous RN-like cryptosystems.

Brute Force Attack: In this kind of attack, the ad-
versary aims to enumerate the code set, i.e. the set of
equivalent codes; to determine the error vector and
the permutation matrix. As mentioned in Section 2,
decoding algorithm of polar codes is based on succes-
sive cancellation. Hence, the attacker must find all
of the frozen bits and the fixed bits. In our scheme,
the number of components of these vectors is at least
266 bits. Therefore, the number of such vectors is at
least 2266, which denotes an impractical amount of
preliminary work.

For the pseudorandom error vector es of length
N , there is a large number of non-zero vectors (i.e.
2N/2 − 1), because of the large code parameters.

The number of permutations P in a block diago-
nal form is l!, where l is the number of rows of the
permutation submatrix πl×l and l is a divisor of the
code length N . It is recommended that l should be
chosen such that the number of all possible permu-
tations leads to a large amount of preliminary work
with regard to the design parameters of the code. For
instance, l = 32, l = 64, or l = 128 yields l!≥ 2117,
l!≥ 2295, and l!≥ 2716, respectively. Thus, choosing
each of these values for l makes the computation im-
practical. Therefore, one can choose l = 32, to reduce
the key size while having an acceptable level of secu-
rity.

RN attack: The symmetric key scheme proposed by
Rao [11] uses error vectors of weight t ≤ bd−12 c, where
d is the minimum distance of the (n, k)-code. Rao
and Nam showed that this cryptosystem is vulnerable
to a majority voting attack [12]. However, a chosen-
plaintext attack can only succeed when t

n is small
enough. In our scheme, the generated error vectors
have a Hamming weight of at most N and N

2 on
average. This makes our scheme resistant against this
attack.

Struik-Tilburg Attack: One of the drawbacks of
the McEliece scheme is the low code rate. The RN
scheme was introduced to remove this defect. Rao
and Nam used the error-correcting properties of the
code to determine predefined error patterns [12]. The
error patterns used in the RN scheme have an average
Hamming weight equal to half of the code length. Rao
and Nam claimed that determining the encryption
matrix of their scheme in a chosen-plaintext attack
has a work factor of at least O(N2k) for the (N, k)-
code [12]. However, Struik and Tilburg proposed a
chosen-plaintext attack on RN cryptosystem that
shows it is insecure [42]. All of these attacks were
practical because of the small code parameters used
by Rao. However, the size of the polar code used in
our scheme is large enough (One may use N = 1024
and have the same level of security while having lower
data rates), so that such an attack is not practical.

5 Conclusions

In this paper, we have proposed a new scheme based
on polar codes: A symmetric-key secure channel cod-
ing scheme. The scheme utilizes a specific form of
permutation matrix, a random error vector and input
bits of bad channels as the secret key. The security
and efficiency of this scheme have been discussed; the
proposed scheme is secure against the brute force,
RN and Struik-Tilburg attacks, and it is more effi-
cient than the previous schemes from the view of the
key size (1.6Kbits), the implementation complexity
(O(NlogN)), the code rate (0.87) and the error per-
formance (< 10−6) for the codes with comparable
parameters.

The new scheme employs polar codes based on the
following four reasons: (1) Polar codes can achieve
the channel capacity, (2) the performance of the code
improves in large block lengths which is desirable for
satellite communications, (3) the total complexity of
encoding and decoding of the codes is lower than the
previously used codes and (4) the specific structure of
the generator matrix of polar codes makes it possible
to have a small key size (1.6Kbits) to be exchanged
which is less than the smallest key size of the previ-
ously proposed schemes to the best of our knowledge.
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