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Guess-and-determine attack is one of the general attacks on stream ciphers.
It is a common cryptanalysis tool for evaluating security of stream ciphers.
The effectiveness of this attack is based on the number of unknown bits
which will be guessed by the attacker to break the cryptosystem. In this
work, we present a relation between the minimum number of the guessed
bits and uniquely restricted matching of a graph. This leads us to see that
finding the minimum number of the guessed bits is NP-complete. Although
fixed parameter tractability of the problem in term of minimum number of
the guessed bits remains an open question, we provide some related results.
Moreover, we introduce some closely related graph concepts and problems

including alternating cycle free matching, jump number and forcing number of

a perfect matching.

© 2017 ISC. All rights reserved.

1 Introduction

uess-and-determine (GD) attack is a general
G cryptanalysis technique for evaluating security of
symmetric cryptosystems. In particular, GD attacks
have been a favourite tool for evaluating strength
of many prominent stream ciphers during the past
decade. Examples include, the attacks on RC4 in [1],
on A5/1 in [2], on Snow family in [3-7] on Sober
family in [8-13], on Sosemanuk in [14-16], on Polar
Bear in [17, 18] and on Rabbit in [19].

Any cryptosystem can essentially be described us-
ing a system of nonlinear equations. In many cases,
the system is an over-defined set of equations over
some finite field. In particular, many ciphers proposed
during the last decades have been designed to be ef-
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ficient on modern w-bit processors where typically
w = 8,16, 32, 64. These ciphers can be described us-
ing some equations over Fow. GD attack is a basic
divide-and-conquer approach to solve the correspond-
ing equation system. The attacker guesses the values
of some unknowns, and then recovers the remaining
variables using the available relations. If the guessed
values are incorrect, the attacker reaches a contradic-
tion. However, if he is lucky and the guessed values
are correct, the remaining unknowns will be deter-
mined. To mount the attack, all possible values for
the set of guessed variables, known as basis, must be
tried. Thus, the effectiveness of the attack is deter-
mined by the size of the basis.

In this paper, we consider a class of GD attacks on
a system of m equations over [, involving n unknown
variables where m = poly(n) and ¢ = O(1). We as-
sume that each equation in this system has the follow-
ing property: if the equation depends on, let us say, ¢
variables and t — 1 of them are known, then the last
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variable is uniquely and efficiently determined. This
is a typical property of equations derived for many
ciphers in practice. Assume that a basis of size k ex-
ists and the attacker knows one. To mount the actual
attack, the attacker then needs to try all ¢* possible
ways that the unknowns can be assigned. Since the
correctness of each assignment can be efficiently veri-
fied, one can find all satisfying solutions essentially
in time O(¢*), ignoring polynomial factors.

The naive approach to find a basis of size k, if one
exists, is to examine all (Z) subsets of size k of the set
of all unknowns. Checking if a given subset is a basis
can be done in polynomial time. Therefore, this leads
to the time complexity O(n*poly(n)) for finding a

basis of size k.

Finding a basis using the naive approach is already
unfeasible even for moderate values such as n =
64 and k = 10 since n* = 250 is considered hardly
affordable for cryptanalysis purposes. Therefore, GD
attacks have often been designed ad-hoc based on the
experience of cryptanalysts to find a basis of a small
size. There are also some research [5-7] trying to find
a (non-optimal) basis in a more systematic way using
some heuristics based on greedy algorithms.

1.1 Motivation and Contribution

Although finding an optimal basis, i.e., a basis with
minimum size, has been understood to be a difficult
problem by cryptanalysts, to the best of our knowl-
edge, no attempt has been devoted to understand the
computational complexity aspects of this problem. In
this paper, we consider a rigorous treatment of the
problem of finding a minimum-size basis and show
that it is NP-complete. We also study the fixed pa-
rameter tractability of the minimal basis problem in
terms of the size of optimal basis size k; that is, if it
has an O(f(k)poly(n))-algorithm. This is very impor-
tant both from a theoretical complexity point of view
and practical cryptanalysis since the naive approach
has a lower bound complexity Q(n*). Although we
are not able to prove the fixed parameter tractability
of the problem in terms of k, we show that it is fixed
parameter tractable in terms of the treewidth of a
graph which we associate to the problem.

The remainder of this paper is organized as fol-
lows. In Section 2, we introduce some graph concepts
that are used in the next sections. In Section 3, we
give a precise definition of finding a minimal basis
for GD attack and present an equivalent description
of the problem in graph theory terminology. Then in
Section 4, we study computational complexity of the
finding a minimal basis. Section 5 relates our prob-
lem to two other mathematical problems from graph
theory. In Section 6, we discuss some aspects of the
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GD attack which leads to improved cryptanalytic at-
tacks in practice. Finally, the paper is concluded in
Section 7.

2 Graph Preliminaries

We assume that the reader is familiar with basic graph
terminologies. Here we introduce some more advance
notions. Appendix A includes some illustrating exam-
ples. An isolated vertex is a vertex with degree zero.
An empty graph has no edges, i.e., it consists of only
isolated vertices. A pendant vertex is a vertex with
degree one. A matching in a graph is a set of edges
where no two edges share a common vertex. A vertex
is matched (or saturated) if it is an endpoint of one of
the edges in the matching. A matching of a graph is
called perfect if all vertices of the graph are matched.

Definition 2.1 (uniquely restricted matching).
A matching M in a graph G is called a uniquely re-
stricted matching if its matched vertices induce a sub-
graph which has a unique (perfect) matching, namely
M itself (see Figure A.la and A.1b).

Definition 2.2 (alternating cycle with respect
to a matching). Let M be a matching in graph
G. A cycle in G is called alternating with respect
to M if its edges appear alternately in M and
E(G)setminusM (see Figure A.lc).

Definition 2.3 (alternating cycle free match-
ing). A matching M in a graph G is called alter-
nating cycle free if G has no alternating cycle with
respect to M.

Definition 2.4 (tree decomposition of a graph).
A tree decomposition of a graph G is a pair (T, B),
where T is a tree and B = {B;}icv (1) is a collec-
tion of subsets of V' called bags, such that (see Fig-
ure A.2):

e Every vertex of G is contained in at least one
ba’g Bia
e For each edge of G, some bag B; contains both
its vertices,
e For all vertices i, j, k € V(T), if j belongs to the
unique path from ¢ to k in T', then B; N By, C
B;.
Definition 2.5 (treewidth of a graph). The
width of a tree decomposition (T, B) is one less than
its maximum bag size, i.e., max;cy (r)|B;|—1. The
treewidth of a graph G is defined as the minimum
width over all possible tree decompositions of G.

See [20, 21] for more details about treewidth and
tree decomposition.

3 Minimal Basis Problem

In this section, we provide a formal definition of
the problem of finding a minimum-size basis of an
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equation set with some special properties. We also
present an equivalent description of the problem in
graph theory terminology which is easier to work with.
We need to introduce some definitions.

Definition 3.1 (invertible equation). An equa-
tion f(x1,...,2¢) = 0 over F, is called invertible if
any variable of the equation is uniquely determined
in time O(tlog ¢) when all other variables are known.
A preprocessing phase that computes a table of size
O(q) in time O(q) is allowed.

See Appendix B for a typical invertible equation
that appears during cryptanalysis of symmetric cryp-
tosystems.

Definition 3.2 (invertible equations system).
Let X = {z1,...,2,} be a set of n variables and
F ={f1,..., fm} be a set of m invertible equations,
each depending on a subset of X. We call (F, X) an
invertible equations system.

Definition 3.3 (basis of an invertible equations
system). Let (F, X) be an invertible equations sys-
tem. A subset B C X is called a basis for the system
if at the end of Procedure 1 we have U = X.

Procedure 1 (used in Definition 3.3)
Input: An invertible equations system (F,X)
and a subset B C X
U «+ B while there is an equation f € F de-
pending on t variables with t —1 of them in U do
Let z ¢ U be the (remaining) variable that f
depends on Add = to U
end

Note that any subset B C X of size |B|= |X|-1
is a basis; also a basis might be empty. Therefore,
for a basis B we have 0 < |B|< | X|-1.If B is a
basis for (F, X), any assignment to the variables in
B can efficiently be checked in terms of consistency.
If the whole set of equations are consistent given the
assigned values, the remaining variables are uniquely
determined. Otherwise, a contradiction is reached.

Below, we present a toy example as well as a real
example of a set of invertible equations.

Example 3.1 (real). Appendix C describes the set
of equations that fully specifies the Snow 2.0. [4, 22]
stream cipher.

Example 3.2 (toy). The following set of invertible
equations

has no basis of size one, but has some bases of size
two, e.g., B = {x2,z3}.

Our goal is to study the problem of finding a mini-
mal basis of an invertible equations system. Instead,
we will work with an equivalent description of the
problem in terms of bipartite graphs. We first define
the basis of such graphs.

Definition 3.4 (basis of a bipartite graph). Let
G = (F, X, E) be a bipartite graph. A subset B C X
is called a basis of G if at the end of Procedure 2, G
becomes empty:

Procedure 2 (used in Definition 3.4)
Input: A bipartite graph G = (F, X, E) and a
subset B C X
Remove every edge in G which is incident to some
vertex in B while there is an edge fr € E such
that f € F, z € X and deg(f) =1 do
Remove every edge in GG which is incident to

x
end

We now formally introduce the graph version of
minimal basis problem, that we will work with in the
rest of this paper.

Definition 3.5 (minimal basis problem). The
minimal basis problem is defined with the following
input instance and question:

e Instance: A connected bipartite graph G =
(F,X,E) and an integer k

e Question: Does G have a basis of size at most
k?

We ignore to provide a variant of the above def-
inition for an invertible equations system. The re-
lation between the two versions of the problem of
finding a minimal basis should be clear. Let F =
{f1, f2,.-., fm} be a set of invertible equations de-
pending on variables X = {zq,22, -, z,}. We as-
sociate a bipartite graph G = (F, X, F) with vertex
set F'U X to the equation set as follows: the equa-
tion f; € F' is adjacent to the variable z; € X, i.e.,
fix; € E, if and only if f; effectively depends on x;.
Clearly, a set B C X is a basis for the invertible equa-
tions system (F, X) if and only if it is a basis for the
associated graph G. Notice that the associated graph
has no isolated vertex.

4 Computational Complexity of
Minimal Basis Problem

4.1 NP-completeness

The following theorem presents a close connection
between bases and uniquely restricted matchings of

a bipartite graph.
@
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Theorem 1. Let G = (F, X, E) be a non-empty bi-
partite graph with no isolated vertex and let 0 < k <
| X |—1 be an integer. The graph G has a basis of size

k if and only if it has a uniquely restricted matching
of size | X|—k.

In the following we propose and prove two lemmas
from which Theorem 1 is concluded.
Lemma 1. Let G = (F, X, E) be a non-empty bipar-
tite graph with no isolated vertex and let B C X be a
basis of size k for G, where 0 < k <|X|—1. Then G
has a uniquely restricted matching of size | X|—k.

Proof. Similar to the first step of Procedure 2, re-
move every edge in G which is incident to some ver-
tex in B. Denote the remaining subgraph by Hy. The
graph Hj is non-empty and it has at least one pen-
dant vertex f; € F. Assume that z; € X is the
only vertex incident to fi; and let e; = fiz1. Let
H, be a graph obtained from H, by deleting every
edge in Hy which is incident to x;. Since B is a
basis for the graph G, then (assuming k < |X|—2)
there exists at least one pendant vertex fo € F in
Hy. Let 2 € X be the only vertex incident with
fo and let e; = foxs. Repeat the previous proce-
dure until an empty graph is obtained. Note that
since B is a basis of size k for the graph G, this
procedure stops after |X|—k rounds. In the sequel,
we show that M = {e1,e2,...,e/x|—x} is a uniquely
restricted matching for G. Assume that K is the
induced subgraph of the graph G by the vertices
{fi, 21, f2, 22, -, fix|=k> T x|—k }- The degree of the
vertex f in the graph K is one. Therefore, if K has
a matching M’ of size | X|—k, then all vertices of the
graph K must be matched. The only edge which is in-
cident to the vertex f is e;. Hence, e; € M’. Clearly,
the degree of f5 in the subgraph K \ {f1, 1} is one.
Therefore, if K has a matching M’ of size |X|—k,
then eo € M’. By repeating this procedure, we con-
clude that M’ = M and, therefore, M is a uniquely
restricted matching. O

Lemma 2. Let G = (F, X, F) be a bipartite graph
and let M C E be a uniquely restricted matching of
size | X|—k for G, where 0 < k < |X|-1. Then, B =
X\ V(M) is a basis of size k for G.

Proof. Clearly, B & X since |M|> 1. We show that
at the end of Procedure 2, on input G and B, the
graph G becomes empty. The algorithm first removes
every edge in G which is incident to some vertex
in B. Denote the remaining subgraph by Hj. Since
|M|> 1, the graph Hj is non-empty. We show that
there exist some edge fz € E(Hy) such that f € F,
x € X and deg(f) =1.
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We use a contrapositive argument. Let M =
{fiz1,..., fexe}, where ¢ = | X|—k, and all vertices
{f1,..., fe} have degree at least 2. Notice that M is
the unique matching of Hy of size £. Let K be the
subgraph of Hy induced by the vertices of the set
V(M) = {x1,...,x¢, f1,..., fe}. Since all vertices
in the set {f1,..., fe} have degree at least 2, then
K has a cycle C. Since K is a bipartite graph, the
number of edges of the cycle C' is an even number.
Also, C has some edges of the matching M alterna-
tively. Thus, C is an alternating cycle with respect
to a submatching of M. This is a contradiction since
M is a uniquely restricted matching. Hence, K has
a pendant vertex f; € F. Degree of f; in the graph
Hy is also one since every vertex of the graph Hy in
the section X is a vertex of the graph K.

Let 1 € X \ B be the only adjacent vertex to fi
in Hy. Remove all edges incident to x1 in Hy and let
H; denote the resulting graph.

If |[M|= 1, then E(H;) = () and hence B is a ba-
sis as required. Otherwise we have E(H;) # . Let
My = M\ {fiz1}. Clearly, M; is the only matching
of size £ — 1 for the graph H;. Again, we argue that
H, has a pendent vertex fo € F. By repeating the
previous procedure |M| times, we finally obtain an
empty graph. Therefore, B is a basis for the graph
G. O

In [23], it has been shown that maximum uniquely
restricted matching problem is NP-complete for bi-
partite graphs. Therefore, we have the following corol-
lary.

Corollary 1. The minimal basis problem is NP-
complete.

4.2 Fixed Parameter Tractability

A naive algorithm to find a basis of size k for a bipar-
tite graph G = (F, X, E), if one exists, is to examine
all (}) subsets B C X of size k. Checking if a given
subset is a basis can be done in time O(|E|+|X|) us-
ing Procedure 2. Therefore, this leads to the time
complexity O(n*poly(n)) for finding a basis of size
k, where | X|=n and |F|= poly(n). This section dis-
cusses the fixed parameter tractability of the minimal
basis problem. Unfortunately, the fixed parameter
tractability of the problem in terms of the size of op-
timal basis size k—that is, if an O(f(k)poly(n))-time
algorithm solves the problem ' —remains unanswered.

L As an example for a fixed parameter tractable problem on
graphs, we mention the vertex cover problem. A vertex cover of
a graph G = (V, E) is a subset of vertices S C V that includes
at least one endpoint of every edge in E. There is a simple
algorithm that finds a vertex cover of size k, if any exists, in
time O(2F|E|): pick an edge uv € E and recursively check if
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Therefore, we draw our attention to studying the
fixed parameter tractability of the problem in terms
of the graph treewidth.

In [23], it has been shown that a matching of a bi-
partite graph is uniquely restricted if and only if it is
alternating cycle free. Therefore, the problem of find-
ing a maximum alternating cycle free matching in bi-
partite graphs is polynomially equivalent to the prob-
lem of finding a minimum-size basis. The Courcelle’s
celebrated theorem [24] (also see [25]) can be used
to show that finding a maximum alternating cycle
free matching is fixed parameter tractable in terms of
the graph treewidth. Also notice that the problem of
computing treewidth is fixed parameter tractable [26].
Therefore, we have the following corollary.

Corollary 4.1. Finding a minimal basis of a bipar-
tite graph is fixed parameter tractable with respect
to the graph treewidth.

We remark that as it has been noticed in [25],
the stated complexity by Courcelle’s theorem con-
tains towers of exponents in the treewidth parameter,
making it impractical and a purely theoretical result.
However, in [25], a significantly faster algorithm with
running time O(4w2+w -w? -log(w) - n) has been pro-
posed for finding a maximum alternating cycle free
matching of a bipartite graph G, where n is the num-
ber of vertices of G and w denotes the width of the
tree decomposition.

5 Problems Related to Minimal
Basis Problem

In this section, we draw reader’s attention to two
mathematical problems related to minimal basis prob-
lem.

5.1 Jump Number

We introduce a parameter for a bipartite graph which
is related to its minimum-size basis. In the sequel, we
give the necessary notations and definitions.

Recall that a partially ordered set or a poset is a pair
P = (X, <) where X is a set and < is a reflexive and
transitive binary relation. A pair of elements a,b € X
are called comparable if a < b or b < a; otherwise
they are called incomparable. We write a < bif a < b
and a # b. A sequence aq,...,as is called a chain of
Pifa <--- < as A poset without incomparable
elements is called a linear or total order. Let P =
(X, <) be a poset on a finite set X. A linear extension
of P is a total ordering L = (X, <) where the relation
between comparable elements of P is preserved in L;
that is, if a < b, for a,b € X, then a < b. It then

G\ uor G\ v has a vertex cover of size k — 1.

follows that z1,...,z, is a chain of L where X =
{z1,...,z,}. A pair of consecutive elements (x;, ;1)
is a jump of L if x; and x;41 are incomparable in P.
In fact, the jumps partition the chain x1,...,x, of
L into disjoint chains Cy,Cs, ..., C), of P such that
the maximum element of C; is incomparable with
the minimum element of C;11. The jump number of
a partial order P is the minimum number of jumps
taken over all linear extensions of P.

A (loopless undirected) graph G = (X, F) is called
a comparability graph, if it is possible to find a poset
P = (X, <), called a poset of G, such that for each
distinct a,b € X if ab € E then a and b are compara-
ble in P. It is well-known that a graph is a compa-
rability graph if it is transitively oriented; that is, if
it can be turned into a directed graph by orienting
each edge such that for every vertices x, ¥, z, it holds
that if zy and yz are oriented edges then so is xz.
The jump number of a comparability graph is defined
as the jump number of any of its posets. From the
results of Habib [27] and Mohring [28] the jump num-
ber of a comparability graph is well-defined since it
is invariant with respect to the underlying poset.

Orienting the edges of a bipartite graph from one
side of the bipartition to the other clearly results in
a transitive orientation. Thus, every bipartite graph
is a comparability graph. A result from Chaty and
Chein [29] shows that for a bipartite graph G =
(F,X,E) with a maximum alternating cycle free
matching M we have

[M[+j(G) = |F[+|X]-1,

where j(G) is the graph’s jump number. Therefore,
we have the following theorem:

Theorem 2. Finding the jump number of a bipartite
graph is polynomially equivalent to the problem of
finding the maximum alternating cycle free matching
of G and it is itself equivalent to finding the minimum-
size basis of G.

5.2 Smallest Forcing Number

This subsection establishes a relationship between
a basis of a bipartite graph and another parameter
defined for graphs. To continue, we need some termi-
nology that follows.

Let G be a graph that admits a perfect matching.
A forcing set of a perfect matching M in G is a subset
S of M contained in no other perfect matchings of G.
The forcing number of a perfect matching M of G is
defined as

f(G, M) = min{|S|: S is a forcing set of M}.

The forcing number of G is defined as

f(G) =min{f(G, M) : M is a perfect matching of G}.
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Remark 1. Motivated by applications in chemistry,
the concept of forcing number was first introduced
in [30]. Later, the forcing number of a perfect match-
ing was studied in [31] as a mathematical concept.
See also ([32]) for a survey. The computational com-
plexity of finding forcing number of perfect matching
and graph are studied in the literature, see ([33, 34]).

Remark 2. Forcing set can be considered for other
mathematical parameters other than perfect match-
ings. In fact, this concept has a general definition as
follows. Let (F,S) be a pair such that F is a fam-
ily of sets and S € F. A set D C S is a forcing
set, also known as defining set, of (F,S) if S is the
only element of F that contains D as a subset. This
concept has been studied in numerous cases, such
as vertex colorings, perfect matchings, dominating
sets, block designs, geodetics, orientations, and Latin
squares [35].

We can prove the following relation between the
forcing number and the minimum basis size of a graph
G.

Theorem 3. Let G be a bipartite graph that admits a
perfect matching. Let b(G) be the size of the minimal
basis of the graph G. Then, b(G) = f(G).

Proof. Let G = (F, X, E) be a bipartite graph and
M be a perfect matching of G that f(G) = f(G, M).
Let S be a forcing set of the matching M that |S|=
f(G, M). Then by definition of the forcing set, M\ S
is the only perfect matching of the graph G\ S. In
other words, M\ S is a uniquely restricted matching
of the graph G.

By Lemma 2, the set B = X\V(M\S) = V(S)NX
is a basis of the graph G. Also notice that |B|=|S|
and b(G) < |B|, since b(G) is the size of a minimum
basis. Consequently, b(G) < |S|= f(G, M) = f(G).
Conversely, let B be a basis of the graph G of size
b(@). Then by Lemma 1, the graph G has a uniquely
restricted matching M of size |X|—b(G). Consider
the subgraph H of the graph G induced by the ver-
tices FU (X \ (V(M) N X)). Since G admits a per-
fect matching and H is an induced subgraph of the
graph G, H has a matching M’ such that every ver-
tex of (X \ (V(M)N X)) is a saturated vertex in M.
So, M’ U M is a perfect matching of the graph G.
Since M is a uniquely restricted matching then B
is a forcing set of the matching M’ U M. Therefore,
£(G) < F(G, M) < |B|=b(G). O

6 Improved Guess and Determine
Attacks

In this section, we discuss some points with respect

to the effectiveness of guess and determine attack.
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This might lead to improved algorithms for finding a
satisfying solution.

6.1 Better Guessing Strategy

Suppose that an invertible equations system (F, X)
over F, has a minimal basis of size k. We have implic-
itly assumed that an attacker first guesses the basis
and then computes the rest of the variables. This
of course requires a computation of order O(q*), ig-
noring polynomial factors. However, this might not
necessarily be the best strategy. Bellow, we consider
two such cases.

1. Separable equations. One trivial example is
when the system is separable. More precisely, assume
that X and F' can respectively be partitioned into
(X1, X2) and (Fy, Fy) such that (Fy, X;) and (Fy, X5)
both have unique solutions. If these systems have
respectively minimal bases of sizes k1 and ko, then
the original system has a basis of size k = k1 +k3. The
unique solution can then be found in time ¢** + ¢*2
instead of gF1tk2,

2. Early contradictions. A less trivial case is
when after guessing some part of a basis an early con-
tradiction is reached. To be concrete, assume that
(F, X), with | X|= n, has a minimal basis of size k.
Furthermore, suppose that by guessing only k¥’ < k
elements of the basis, m other variables are subse-
quently uniquely determined where m < n. Assume
that there is an equation in F' that only depends on
the determined m variables and it is algebraically in-
dependent of all the equations that have so far been
used to determine these m unknowns. This “check”
equation can be used to reduce the initial qk, possi-
bilities by a factor of q. Therefore, the overall attack
complexity is reduced by a factor of ¢, i.e., ¢*~! in-
stead of ¢*. In [14, 16] this idea has been used to
mount a faster attack on the Sosemanuk [36] stream
cipher.

6.2 Working With an Equivalent Equations
System

In some cases working with modified equations system
might lead to an improved attack. Bellow we present
three examples.

1. Linear equations system. When (F, X) is a
linear system over g, say with unique solution, then
the satisfying solution can be found using Gaussian
elimination in polynomial time.

2. Using redundant equations. In some cases
adding redundant equations to the equation system
might lead to a faster attack. One case is when attack-
ing a stream cipher based on LFSRs (Linear Feed-
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back Shift Registers). The output of an LFSR is de-
termined by its feedback polynomial. The feedback
polynomial imposes a linear constraint on the output
sequence of the LFSR. Redundant constraints can be
obtained by considering any multiple of the feedback
polynomial. See [37] for an example or refer to the
last paragraph of Appendix C for further discussion.

3. Changing the underlying finite field. In
some cases the equations can be seen over a smaller
finite field. As an example, Sosemanuk [36] stream
cipher works with 32-bit words. In contrary to the
attack in [14, 16] which solves a system of equations
over Fa32, the authors of [38] take a byte-based ap-
proach and solve a system of equations over Fos. Con-
sequently, the overall attack time is dramatically re-
duced form 2226 to 2176,

7 Conclusion

In this paper, we showed that finding the minimum
number of the guessed bits in the guess-and-determine
attack is equivalent to finding the maximum uniquely
restricted matching in a bipartite graph. Using this
observation we studied the computational complexity
aspect of this attack. Also, we introduced the relation
between this problem and some other mathematical
problems such as jump number and forcing number
of a perfect matching. Exploring the fixed parameter
tractability of the problem in terms of the minimum-
basis size remains an open question. An interesting
research problem is to study the approximability as-
pects of the minimal basis problem.
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A Some Illusterating Graphs
Examples

(a) a non-uniquely restricted
matching ([23]).

(b) a uniquely restricted match-
ing ([23]).

(¢) an alternating cycle (of
length 4) with respect to a (per-
fect) matching.

Figure A.1l. Matching examples

Figure A.2. A graph with a tree decomposition ([20]).

B Example of an Invertible Equation

In this section we give an example of a typical invert-
ible equation that appears in analysis of cryposystems.
First we introduce some notations.

Let p be the characteristic of FF, and denote the
field addition and multiplication operations respec-
tively by “®” and “” where multiplication is nor-
mally dropped. Let (ag,- -, aqy—1) be a fixed basis
for the field extension F, over F,,.

The binary operation “+” from F, x F, to I, is
defined as follows:

r+y—z,

w—1 _ w—1 _
. Zi:o Tity, Y = Zi:() Yo, z =
Yoty ziay with 4,9, 2 € F, and

w—1 w—1 w—1
doaipt+ > yp' = zp'  modp”,
i=0 i=0 i=0

where z =

where z;,y;, z; are interpreted as elements of Z,,.

The first three ) ’s are additions over F, and the

last three are over integers. The “—” operation can

be defined similarly.

The binary operation “<«” from Fy x{0,1,...,w—
1} to Fy is defined as follows:

TKTr—Y,

where z and y are represented as above and y; =
Ti—r mod w- Lhe binary operation > can be defined
similarly as ¥; = Zit+r mod w Where x >> r +— y.
Example B.1. Let r1,73 € {0,1,...,w — 1} and
B1, B2, B3 € Fq be some constants where 81, 82 # 0.
Let o : Fy — F, be a permutation. Then,

f(x,y,2) = (Bi(x > r1)DPay)+0(z K r2)+P3 =0

is an invertible equation since we have

v = (87 By @ (0~ oz << 1) = B))) <7

Y= 5;1(61(95 >r)@0-—0o(z<r) —f3)),

z=0"10— (Bi(z>> 1) ® Poy) — B3) S>3 .

After computing the inverse permutation o~! in
time O(q) and saving it in a memory of size O(q),
the three inversions can be computed in O(log q).

C Equations Describing Snow 2.0.
Stream Cipher
The Snow 2.0. [22] stream cipher is an updated version

of Snow [39]. Figure C.1 shows a schematic picture of
Snow 2.0. It is composed of a Linear Feedback Shift

Register (LFSR) and a Finite State Machine (FSM).

The LFSR is defined with the following primitive
feedback polynomial

() =az'® @2 a2’ B 1 € Foselz],
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Figure C.1. A schematic of Snow 2.0. stream cipher [22]

where « is some known constant and @ is the
finite field addition (or bit-wise XOR operation on
32-bit registers). The initial state of the LFSR is
denoted by (s15,814,--.,80) € IF%SE. Therefore, the
output sequence of the LFSR, {s;}+>0, is determined
according to the following recursion:

1
St+16 = & ~St411 D St42 D asy.

The FSM has two 32-bit registers, denoted by R1 and
R2, and the value of the registers at time ¢ > 0 are
respectively denoted by R1y, R2; € Fos2.

The output of the FSM at time ¢ > 0, denoted
by F}, is then computed as follows from the initial
values of the registers, R1y and R2y, and the output
sequence of the LFSR:

Ft = (St+15 + th) (&%) R2t

ISeﬂure@

Here, + denotes the modulo 232 addition on 32-bit
registers (see also Appendix B). The values of the
registers are updated according to

Rli41 = si45 + R2y,
R2t+1 = S(th)

where t > 0 and S : Fos2 — Faaz is a known permu-
tation based on round function of AES [40].

Finally, the output sequence of the stream cipher,
also called the running key or keystream, is denoted
by {z}1>0 and computed as follows:

2=F®s, t>0

In an initial state recovery attack, an attacker
is given a piece of keystream, say {z}~,', and
his goal is to find the unknown initial state
(515, S14, - - ., S0, Rlg, R20) € F%% When N > 18, the
initial state is almost uniquely determined. Clearly,
all the involved equations are invertible. In [7], it is
claimed that for a certain amount of N (unspecified
in [7], but probably 50 — 70), there exists a basis of
size 8 for the corresponding equations system. This re-
duces the search from 218%32 = 2576 o 28%32 — 9256,
However, an observation of [37] shows that one can
do better by utilizing redundant equations such as
those imposed on the output sequence of the LFSR
by multiples of the feedback polynomial. In particu-
lar, the authors of [37] claim that, by incorporating
equations imposed on {s;};>0 by (2% + 1)7(z) and
(2% + 1)m(z), one can find a basis of size 6, which
shows an attack with complexity 26%32 = 2192, See
Section 6 for further discussion.
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