
ISeCure
The ISC Int'l Journal of
Information Security

January 2017, Volume 9, Number 1 (pp. 41–51)

http://www.isecure-journal.org

A New Security Proof for FMNV Continuous Non-malleable

Encoding SchemeI

Amir S. Mortazavi 1, Mahmoud Salmasizadeh 2,∗, and Amir Daneshgar 3

1Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
2Electronics Research Institute, Department of EE as adjunct member, Sharif University of Technology, Tehran, Iran
3Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

A R T I C L E I N F O.

Article history:
Received: 13 November 2016

Revised: 15 January 2017

Accepted: 31 January 2017

Published Online: 31 January 2017

Keywords:

Non-malleable, Continuous

Non-malleability, Tamper-resilient
Cryptography, Leakage-resilient.

A B S T R A C T

A non-malleable code is a variant of an encoding scheme which is resilient

to tampering attacks. The main idea behind non-malleable coding is that

the adversary should not be able to obtain any valuable information about

the message. Non-malleable codes are used in tamper-resilient cryptography

and protecting memories against tampering attacks. Many different types

of non-malleability have already been formalized and defined in current

literature, among which continuous non-malleability is the setup in which the

messages are protected against adversaries who may issue polynomially many

tampering queries. The first continuous non-malleable encoding scheme has

been proposed by Faust et al. (FMNV) in 2014. In this article, we propose

a new proof of continuous non-malleability of the FMNV scheme. The new

proof will give rise to an improved and more efficient version of this scheme.

Also, the new proof shows that one may achieve continuous non-malleability

of the same security by using a leakage resilient storage scheme with fewer

bits for the leakage bound. This shows that the new scheme is more efficient

and practical for tamper-resilient applications.

c© 2017 ISC. All rights reserved.

1 Introduction

H ardware attacks are considered to be dangerous
for cryptographic devices, which are usually di-

vided into active or passive attacks. Passive attacks
are based on a measuring of side channel informa-
tion such as the power consumption of a device or
its electromagnetic emanations, while active attacks
try to tamper with the devices itself. In a tampering
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attack the adversary is assumed to have the ability
to modify and manipulate some parameters of the
system, where tamper-resilient cryptography consid-
ers a theoretical study of such attacks. Tampering
attacks can be implemented with malwares, viruses
and adversaries with the ability of access to memory
or injection faults and related key attacks as variants
of such attacks. An adversary applying a tampering
attack can replace a parameter (e.g. secret key) of a
cryptographic scheme with another related value and
based on the new outputs of the scheme can infer
some information about that parameter (e.g. secret
key).

Non-malleable coding is among countermeasures
against tampering attacks as a keyless coding scheme
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designed to protect some critical parameters of the
scheme against the attack. The main goal of non-
malleable coding is to resist against an active adver-
sary that has the ability to modify a codeword accord-
ing to a family of Turing machines (i.e. algorithms).
In non-malleable coding, as a variant of encoding
schemes, one allows a message m to be encoded into
a codeword c, such that c can resist against tam-
pering attacks. A coding scheme is non-malleable if
the tampered codeword does not provide any valu-
able information about the original message (i.e. the
message embedded in the codeword). It is worth-
while to say that non-malleable codes can be used
in tamper-resilient cryptography or protecting mem-
ories against tampering attacks. To point out some
applications one may note that non-malleable cod-
ing schemes provide an algorithmic procedure against
tampering attacks for cryptographic schemes embed-
ded in hardware implementations such as smart cards
and hardware security modules whose soundness is
dependent on satisfaction of required assumptions
of non-malleable schemes if they exist. Hence, it is
recommended to use this type of tamper proofs in
an extra layer of security accompanied by hardware
tamper proof solutions.

From an abstract viewpoint, tampering attacks can
only be defined for a specific subclass of Turing ma-
chines (rather than the whole set of such machines).
Informally, the concept of security as non-malleability
is defined based on an experiment between an adver-
sary and a simulator Sim. For this, let’s assume that
Enc and Dec are encoding and decoding algorithms
for a non-malleable encoding scheme. The adversary
selects its message m and a codeword c is computed
within the experiment such that c ← Enc(m). The
adversary then issues a tampering Turing machine T
(of the predefined type) and within the experiment ei-
ther one computes m′ := Dec(T (c)) or m′ ← Sim(T )
and then m′ is given to the adversary. The encod-
ing scheme is called secure if for all such adversaries
there exist an efficient simulator such that the adver-
sary cannot win the above experiment for non-trivial
tampering queries except with negligible probability.

It is straightforward to show that non-malleable
codes do not exist for the family of all efficient tam-
pering Turing machines because a decoding algorithm
is always a member of such family. Thus we have to re-
strict the class of tampering attacks in a well-defined
setup. The split-state model is a class of tampering
Turing machines for which efficient constructions of
non-malleable codes are known, in which the code-
word has several parts and each part is tampered with
independently. If we can satisfy the independence of
tampering attacks on each part of the codeword, then
this type of coding can be used in practical purposes.

Using two separated and isolated memories can miti-
gate and relax this required assumption.

There exists a variety of definitions for non-
malleability in current literature, where the security
is based on the indistinguishability in general. For in-
stance, the one-time non-malleability considers only
one tampering where continuous non-malleability
allows polynomially many tamping attacks.

In an information theoretical setting for continu-
ous non-malleability which is presented in [2], the
adversary is allowed to issue an arbitrary function
f : {0, 1}n → {0, 1}n as a tampering query, and in [2]
it is shown that an unbounded adversary can always
break the security of non-malleability. Therefore, this
result shows that the computational type of contin-
uous non-malleability is the only scenario in which
one may think of a secure continuously non-malleable
encoding scheme.

In this paper we study the Faust et al. [2] (FMNV
for short) scheme and show that we can prove the
continuous non-malleability for this scheme with a
better efficiency than the original proof. Our proof is
based on the fact that it is hard to break the distin-
guishability of leakage resilient storage scheme. Our
main contribution is the presentation of a new method
for finding the self-destruction round of tampering
queries with 2k + 1 bits of leakage while the original
proof uses 2k log(q) bits of leakage from both oracles
(where q is the number of tampering queries and k
is the length of hash function output). The amount
of the leakage in the new scheme is independent of
the maximum allowed number of tampering queries
(q) and is a constant value. It means that for a fixed
and same security level, our scheme is more efficient,
memory-wise, and requires a cryptographic primitive
with lower resistance against the leakage.

In Section 2 we present a formal definition for
some required primitives. In Section 3 we introduce
the FMNV scheme for a continuous non-malleable
scheme, and finally, in Section 4 we compare our proof
with the original one and present a new proof for the
former scheme.

1.1 Related Work

In [3] the arithmetic manipulation detection codes
(AMD codes) are introduced as a keyless and special
type of non-malleable codes against a family of tam-
pering Turing machines with an algebraic structure.
The general and formal definition of non-malleable
codes is first introduced by Dziembowski et al. [4]
for the bit-wise family of Turing machines which can
tamper with every bit of the codeword independent
of other bits. In [5] an efficient non-malleable scheme
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for bit-wise family of tampering is introduced.

The first non-malleable code for a block-wise tam-
pering is introduced in [6]. Liu and Lysyanskaya [7]
introduced the first non-malleable code in the split-
state model for all PPT Turing machines and also con-
sidered the leakage of the codeword. Non-malleable
codes for a family of Turing machines of size 2poly(n)

has been studied in [8, 9]. Faust et al. [2] extended
the definition of non-malleability in a way to include
continuity and proposed a scheme in the CRS model.
Aggarwal et al. [10] introduced a generalization of
non-malleable codes, called non-malleable reductions.
Chandran et al. [11] defined their new notion of looka-
head (block-wise) non-malleable codes and proposed
a new scheme in this model.

The first information theoretic non-malleable code
is introduced by Dziembowski et al. [12] for only
one-bit messages, in [13] it is extended to multi-bit
messages and in [14, 15] is extended to constant rates.
See also [9, 16] for other contributions related to the
information theoretic model.

Austrin et al. [17] studied the effect of tamper-
ing on randomness of cryptographic algorithms. In
[18, 19], [20] and [21] constructions for secure and
non-malleable public key, symmetric key and com-
mitment schemes are presented, respectively. Some
contributions as [2, 7, 22, 23] also focus on the ap-
plications of non-malleable codes for tamper-resilient
cryptography. Dachman-Soled et al. [24] studied the
problem of securing RAM computation against mem-
ory tampering and leakage attacks. Coretti et al. [25]
showed that non-malleable codes can be used to con-
struct a CCA secure public key.

1.2 Notations

Given a set S, we write a ∈R S to denote sampling
an element a from set S uniformly at random. We use
:= to denote deterministic assignment and ← for the
probabilistic assignment. We use the shorthand PPT
for the phrase probabilistic polynomial-time. The sym-
bol negl is used to refer to a typical negligible func-
tion, that grows smaller than 1

p(n) for any polynomial

p(n) [26]. Hereafter, |f | stands for the output size of
the function f and FMNV is used as a shorthand to
refer to the reference Faust et al. [2].

The leakage oracle Ol(k) interacts with the adver-
sary that can query adaptively leakage Turing ma-
chines Li and receive Li(k) until

∑
i(|Li(k)|) ≤ l for

the secret parameter k.

2 Preliminaries

2.1 Zero knowledge Proofs

A non-interactive zero knowledge (NIZK) proof sys-
tem Π = (Init, P, V,Sim1,Sim2) for a language L ∈
NP,
L = {x : ∃ ω such that R(x, ω) = 1}, consists of ω as
the witness, R as the relation, P, V,Sim1 and Sim2

as PPT algorithms that satisfy the following:

(1) Completeness: For all x ∈ L and all ω such
that R(x, ω) = 1 and Ω ← Init(1n), we have
V (Ω, x, P (Ω, x, ω)) = 1.

(2) Soundness: If x /∈ L then for every ω and
Ω ← Init(1n), Pr[V (Ω, x, P (Ω, x, ω))] = 1 be
negligible.

(3) Zero-Knowledge: For all PPT adversaries we
have Real(n) ≈c Sim(n), where:

Real(n) =

{
Ω← Init(1n);X ← AP (Ω,.,.)(Ω) : X

}
,

Sim(n) =

{
(Ω, tk)← Sim1(1n);

Y ← ASim2(Ω,.,.,tk)(Ω) : Y

}
.

There are several models of NIZK proofs that have
similar definitions as above. In this paper, we use
robust non-interactive NIZK proofs [27]. This type of
NIZK has an extra Extractability property which for
all PPT adversaries there exist an efficient algorithm
Ext such as:

Pr



(Ω, tk, ek)← Sim1(1n),

(x, π)← ASim2(Ω,.,.,tk)(Ω),

ω ← Ext(Ω, (x, π), ek);

R(x, ω) = 1 ∨ (x, π) ∈ Q

∨ V (Ω, x, π) = 0


= 1− negl(n).

where Q denotes the pairs (xi, πi) that Sim2 has
answered A.

Remark 1. In the definition of NIZK proofs the
Init algorithm generates Ω which is shared between
all parties and is known as common reference string
(CRS).

Remark 2. In [2], the robust NIZK proofs require
to support an extra condition in terms of excessive
data called labels. The labels are public strings and
can be used as inputs to P , V , Ext and Sim2. This
property can be achieved by concatenating the label
λ to the statement x, in which case we show the
NIZK algorithms as Pλ, V λ, Extλ and Simλ

2 .

Remark 3. There exists constructions for robust
NIZK’s as is proposed in [27]. The ingredients of
this construction are commitment schemes, pseudo-
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random functions and one-time signatures.

2.2 Leakage Resilient Storage

A leakage resilient storage encoding system
Π =

(
LRS,LRS−1

)
is defined in [4]. In this, Π con-

tains a pair of computable PPT algorithms where for
messages x ∈ {0, 1}m:

(s
0
, s

1
)← LRS(x)

x := LRS−1(s0 , s1).

It is required that Pr[LRS−1(LRS(x)) = x] = 1 for
any message x.

The security of a l-leakage resilient storage system
is defined by experiment LeakageA,l(n) for the secu-
rity parameter n and every PPT adversary A.

The indistinguishability experiment LeakageA,l(n)
is as follows.

(1) The adversary A is given public parameters,
and outputs a pair of messages m0 , m1 in the
message space.

(2) A uniform bit b ∈ {0, 1} is chosen, and then a
codeword (s

0
, s

1
)← LRS(mb) is computed.

(3) Adversary A can query with the leakage oracles
Ol(s

0
) and Ol(s

1
) independently of each other

to maximum l bits.
(4) A outputs a bit b′. The output of the experiment

is 1 if b′ = b, and 0 otherwise.

The encoding scheme Π =
(
LRS,LRS−1

)
is a se-

cure l-leakage resilient storage system if for all proba-
bilistic polynomial-time adversaries A there is a neg-
ligible function negl such that

Pr[LeakageA,l(n) = 1] ≤ 1

2
+ negl(n).

2.3 Strong Leakage Resilient Storage

The encoding scheme Π =
(
LRS,LRS−1

)
is an strong

l-leakage resilient storage scheme [2], if for θ ∈ {0, 1}
and every PPT adversary:

Pr[LeakageA,l,θ(n) = 1] ≤ 1

2
+ negl(n),

where indistinguishability experiment LeakageA,l,θ(n)
is defined as follows:

(1) Adversary A is given public parameters, and
outputs a pair of messages m0 , m1 in the mes-
sage space.

(2) A uniform bit b ∈ {0, 1} is chosen, and then a
codeword (s

0
, s

1
)← Enc(mb) is computed.

(3) Adversary A can interact with the leakage ora-
cles Ol(s0) and Ol(s1).

(4) After finishing leakage queries, A is given sθ.

(5) A outputs a bit b′. The output of the experiment
is 1 if b′ = b, and 0 otherwise.

In this definition, one of the two shares is given
to the adversary after termination of leakage queries.
A good construction for (strong) leakage-resilient is
presented in [2, 4] by using inner product in finite
fields, while it can be shown that the inner product
based LRS schemes are also secure in the information-
theoretic model.

2.4 Non-malleable Codes

We first define an encoding scheme without requir-
ing a key and then define several variants of non-
malleability for these encoding schemes in the split-
state model.

A non-malleable coding Π = (Init,Enc,Dec) in the
split-state model is defined as:

Ω← Init(1n),

(x
0
, x

1
)← Enc(Ω, x) for x ∈ {0, 1}n

′
,

x̃ := Dec(x
0
, x

1
) for x̃ ∈ {{0, 1}n

′
∪ ⊥},

where n′ is a polynomial function of security parame-
ter, ⊥ is the symbol for indication of the failure and Ω
is a public and untamperable string for initialization.
In the split-state model, a codeword has two parts,
such that each share is tamped with independently.

The strong non-malleability for an encoding scheme
is defined based on experiment SNMLRA,l,T (n) as
follows [7]:

Definition 2.1. The indistinguishability experi-
ment SNMLRA,l,T (n):

(1) Init(1n) is run to obtain public parameters Ω.
(2) Adversary A is given Ω, and outputs a pair of

legal messages m
0
, m

1
.

(3) A random bit b ∈ {0, 1} is chosen, and
(x

0
, x

1
)← Enc(mb) is computed.

(4) The adversary A has ability to query the leak-
age oracles Ol(x0) and Ol(x1) to l bits.

(5) Send Turing machines (T
0
, T

1
) for T

0
∈ T and

T
1
∈ T as a tampering query (note that this

step is performed once by adversary).
(a) x′

0
:= T

0
(x

0
), x′

1
:= T

1
(x

1
) and x′ :=

Dec(x′
0
, x′

1
) are computed.

(b) If (x0 , x1) = (x′
0
, x′

1
) then the adversary is

given same∗; else, is given x′.
(6) A outputs b′ ∈ {0, 1}. The output of the exper-

iment is 1 if b′ = b, and 0 otherwise.

The encoding scheme Π = (Init,Enc,Dec) is strong
non-malleable if for all probabilistic polynomial-time
adversaries A if there is a negligible function negl
such that,
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Pr[SNMLRA,l,T (n) = 1] ≤ 1

2
+ negl(n).

Similar to strong non-malleability we can define
l-leakage resilient q-continuous non-malleability [2]
(for short (l, q)-CNMLR) based on experiment
CNMLRA,l,T ,q(n) as follows:

Definition 2.2. The indistinguishability experi-
ment CNMLRA,l,T ,q(n):

(1) Init(1n) is run to obtain public parameters Ω.
(2) Adversary A is given Ω, and outputs a pair of

legal messages m
0
, m

1
.

(3) A random bit b ∈ {0, 1} is chosen, and
(x

0
, x

1
)← Enc(mb) is computed.

(4) The adversary A has ability to query the leak-
age oracles Ol(x0) and Ol(x1) to l bits.

(5) The adversary A can query the tampering ora-
cle to maximum number of q queries. The one
sample query is as follows:
(a) Adversary A sends Turing machines

(T
0
, T

1
) for T

0
∈ T and T

1
∈ T to the

tamping oracle.
(b) x′

0
:= T0(x0) and x′

1
:= T1(x1) is com-

puted.
(c) The value of x′ := Dec(x′

0
, x′

1
) is com-

puted.
(d) If (x

0
, x

1
) = (x′

0
, x′

1
) then tampering ora-

cle returns same∗; else, outputs x′.
(e) If x′ = ⊥, the tampering oracle goes

to the self-destruction mode. (The self-
destruction meas that the oracle will
answer ⊥ to any other query.)

(6) A outputs b′ ∈ {0, 1}. The output of the exper-
iment is 1 if b′ = b, and 0 otherwise.

The encoding scheme Π = (Init,Enc,Dec) is l-
leakage resilient and continuous non-malleable if for
all probabilistic polynomial-time adversaries A there
is a negligible function negl such that,

Pr[CNMLRA,l,T ,q(n) = 1] ≤ 1

2
+ negl(n).

Remark 4. It is required that continuous non-
malleable schemes have to satisfy the uniqueness
property. This means that for any share of a code-
word x

0
it must be hard to find two corresponding

shares x
1

and x
2

such that both (x
0
, x

1
) and (x

0
, x

2
)

make a valid codeword [2]. If we assume that one
can find two valid codewords (x0 , x1) and (x0 , x2)
with x1 6= x2 , then he/she can successfully recover
X

1
from the target codeword (X

0
, X

1
) with asking

a polynomially bounded number of queries to the
tampering oracle. The adversary for finding the ith
bit of the X

1
issues the following tampering query:

The adversary replaces the first share of the code-
word with x0 and replaces the second share of code-
word with x

1
if the ith bit of the second part is 0,

otherwise replaces with x
2
. Based on the answer of

this query the value of the ith bit is revealed.
The adversary can repeat this algorithm to find
all bits of the second share. This shows that the
uniqueness is required for Definition 2.2.

Remark 5. It is straightforward to show that
it is impossible to create an encoding scheme in
the information-theoretical setting of continuous
non-malleable coding (Definition 2.2) according
to the uniqueness property [2, Lemma 2]. In the
information-theoretical definition of non-malleability
the unbounded adversary can query a tampering
Turing machine as follows:
Assume that the challenge codeword is (x

0
, x

1
).

The adversary issues (T
0
, T

1
) as a tampering query

such that T0 , knowing x0 , tries all possible x∗
1

until
Dec(x0 , x

∗
1
) 6= ⊥ and at this step the distinguisha-

bility can be easily signaled to the adversary.

3 Continuous non-malleable coding
schemes

The FMNV scheme [2] and its security are described
as follows.

Construction 3.1. (FMNV scheme).
The FMNV encoding scheme Π = (Init,Enc,Dec) is
based on a strong leakage resilient storage (SLRS),
a collision resistant hash function and a robust non-
interactive zero knowledge in the CRS model. The
hash function family is H = {h : {0, 1}n → {0, 1}k},
and the robust NIZK proof for the language Lt,H =
{h : ∃s such that h = Ht(s)} is referred to as
Π′ = (InitNIZK , P, V ). Let Π′′ =

(
LRS,LRS−1

)
be a

strong l′-leakage resilient storage, and q be the max-
imum number of queries that an adversary can issue
to the tampering oracle. This coding scheme is a
tuple Π = (Init,Enc,Dec), that is defined as follows:

• Init(1n): Choose uniform t ∈R {0, 1}k and run
Ω← InitNIZK .

• Enc(Ω, x):
(1) Compute (s

0
, s

1
)← LRS(x), h

0
= Ht(s0),

h
1

= Ht(s1), λ
0

= h
0
, λ

1
= h

1
,

π
0

= Pλ1 (Ω, h
0
, s

0
) and π

1
= Pλ0 (Ω, h

1
, s

1
).

(2) Let the two split encoding shares be
X0 = (s0 , h1 , π0 , π1) andX1 = (s1 , h0 , π0 , π1).

• Dec(X
0
, X

1
):

(1) Parse Xb as (sb, h1−b, π0
, π

1
) for b ∈

{0, 1};
(2) Run the local check as the verification of

V λ1 (Ω, h
0
, π

0
) and V λ0 (Ω, h

1
, π

1
).

(3) Run the cross check as the verification of

h
0

?
= Ht(s0), h

1

?
= Ht(s1) and equality of

π0 , π1 in the two shares.
(4) If each of the verifications fails return ⊥;

else, output LRS−1(s
0
, s

1
).
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The security of Construction 3.1 is established in
Theorem 1.
Theorem 1 ([2]). The scheme of Construction 3.1 is
l-leakage resilient strong q-continuous non-malleable
when

(
LRS,LRS−1

)
is an l′-leakage-resilient strong

storage, H is a family of collision resistant hash func-
tions with output length of k bits,

(
Init′, P, V

)
is a

robust NIZK proof system for the language Lt,H, q =
poly(n) for sufficiently large n and l′ ≥ 2l + (k +
1) log(q).

4 An efficient continuous
non-malleable encoding scheme

In this section we improve Theorem 1 by using a
new method of proof. We formalize this via a proof
by reduction, in which we show how to use any effi-
cient adversary A to construct another efficient ad-
versary A′ such that if A violates the security of
CNMLRA,l,T ,q(n), then A′ does not satisfy the defini-
tion of indistinguishability for LeakageA′,l′,θ(n). The
main difficulty of the reduction is to present a method
that the adversary of LRS can simulate the answers
of tampering queries without knowing the challenge
codeword. In [2] the proof contains an involved PPT
algorithm for finding the round of self-destruction.
This algorithm needs to access the leakage oracles and
requires a rather large amount of leakage bits. In our
approach, instead of running an algorithm to find the
exact index of self-destruction, we choose a random-
ized approach to make a guess for the index (from
among the q tampering queries) that will correspond
to self-destruction. Note that in this setting, the prob-
ability of such a guess is exactly 1/q. To complete the
proof we, of course, we need to verify the correctness
of our guess which is an important part of the proof.

4.1 Outline of the original proof

First, we present a high-level overview of the origi-
nal proof appeared in [2]. The proof is based on a
reduction from the security of LRS scheme to the se-
curity of continuous non-malleability of the encoding
scheme. It is shown that if the adversary A can break
the security of continuous non-malleability, then there
exists another adversary A′ which can break the se-
curity of the LRS scheme. Note that based on the
LRS experiment the adversary A′ only has access to
leakage oracles Ol(s

0
) and Ol(s

1
) (Section 2.2). the

adversary A′ should run A as a subroutine and sim-
ulate the leakage and tampering queries of A. Since
A′ has no direct access to the challenge codeword,
the simulation of the tampering queries of A is the
most challenging part of the proof. The only rela-
tion of A′ with the challenge codeword is via Ol(s

0
)

and Ol(s
1
), independent of each other. For simula-

tion of the leakage queries of A, A′ runs A(r) with

randomness r several times inside of the leakage ora-
cles to get the total leakage queries. To simulate the
tampering queries of A, A′ answers based on the self-
destruction point j∗. The adversary A′ knows that
for queries before j∗ the tampering codeword is valid
and therefore with knowing only one part of the code-
word (e.g. X

0
= (s

0
, h

1
, π

0
, π

1
)) and based on the

values of π
0

and π
1

and the extractability of NIZK
the values of the other part are known and simula-
tion is completed. In j∗th tampering query the local
checks or global checks of the challenge codeword are
not satisfied and this is the main point for finding
j∗. Then A′ knowing leakage queries runs A(r) with
the same randomness as before inside of Ol(s

0
) and

also inside of Ol(s
1
). Note that by the definition of

self-destruction, j∗ is an index for which the answer
of the j∗th tampering query within Ol(s0) is different
from the j∗th tampering query within Ol(s1). There-
fore, A′ runs the standard binary search algorithm to
find the point at which the answers to the tampering
queries are not equal. According to the complexity of
standard binary search algorithm this step requires
log(q) queries to the leakage oracles.

we summarize main steps of the proof as follow:

(1) According to the security of NIZK, the
InitNIZK is replaced with (Ω, tk, ek) ← Sim1

and P with Simλ
2 (Ω, ., tk).

(2) A′ runs A(r) with randomness r.
(3) A′ with access to leakage oracles Ol(s

0
) and

Ol(s
1
) computes the leakage queries of A by 2l

bits of leakage.
(a) A′ runs the A with the same randomness

r inside of leakage oracle Ol(s
0
). Note that

inside of the Ol(s
0
) the adversary knows

the value of s0.
(b) A′ uses a simulated algorithm to answer

the tampering queries inside of the Ol(s0)
without knowing the value of the s1. (This
simulated algorithm is described in Algo-
rithm 1.)

(c) A′ repeat the above algorithm inside of
the leakage oracle Ol(s

1
).

(d) A′ runs the above steps alternatively to
obtain all the leakage queries of A.

(4) A′ runs the A(r) inside of the leakage oracles
and runs the standard binary search for finding
the index in which the answers of tampering
query from two leakage oracles are not equal
with each other.
(a) This step requires at most log(q) queries

to the oracles.

Our proof is similar to the above proof except that
instead of standard binary search we use guess and
verification method. We guess the index j∗ with prob-
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ability 1/q, however, for every guess we should also
know whether our guess is true or not. If our guess is
false we return a random bit as the answer and if our
guess is true we do normally as before. We will be
needing 2k + 1 bits for testing the correctness of j∗.
Theorem 2. Let Π = (Init,Enc,Dec) be a tuple of
PPT algorithms as in the scheme of Construction 3.1,
Π′′ = (LRS,LRS−1) be an l′-leakage resilient storage,
H a family of collision resistant hash functions with
output length k and q be the maximum number of
tampering queries as a polynomial function of security
parameter n. Then the scheme Π is an (l, q) strong
continuous non-malleable encoding scheme for l′ ≥
2l + 2k + 1.

Proof. We show that if an adversary A distin-
guishes m

0
from m

1
in the experiment of strong

continuous non-malleability, CNMLRA,l,T ,q(n), with
non-negligible probability, then there exists another
adversary A′ that distinguishes the same mes-
sages in the leakage-resilient storage experiment,
LeakageA′,l′,θ(n). The formal description of the re-
duction is as follows.

Let A be a probabilistic polynomial-time adver-
sary that

Pr[CNMLRA,l,T ,q(n)] ≥ 1/2 + ε(n), (1)

for a non-negligible function ε.

Consider the following PPT adversary A′ that at-
tempts to solve the LeakageA′,l′,θ(n).

(1) A′ chooses uniformly t as a index of a fam-
ily of hash functions and runs (Ω, tk, ek) ←
Sim

1
(1n).

(2) A′ chooses the randomness r.
(3) A′ runs the algorithm A(Ω, t, r) and gets the

two messages m
0

and m
1
.

(4) A′ runs the strong l′-leakage-resilient storage
experiment with messages m

0
and m

1
.

(5) Adversary A′ is given access to leakage oracles
Ol

′
(s0) and Ol

′
(s1) for (s0 , s1)← LRS(mb) for

randomly chosen bit b.
(6) A′ with access to its leakage oracles can obtain

the h
0

:= Ht(s0) and h
1

:= Ht(s1) (note that
this is possible since l′ > k).

(7) A′ sets the Xθ = (sθ, h1−θ, π0 , π1), where
πb ← Sim1−λb

2 (Ω, hb, tk) for b ∈ {0, 1} are
simulated robust NIZK proofs (as Construc-
tion 3.1) for h

0
:= Ht(s0), λ

1
= h

1
, h

1
:=

Ht(s1) and λ
0

= h
0

respectively.
(8) A′ runs the algorithm CalcLeakage(Ω, t, h

0
, h

1
,

π0 , π1 , r) and is given two vectors Θ0 ,Θ1 (this
algorithm is execute inside of leakage ora-
cles Ol

′
(s

0
), Ol

′
(s

1
) and simulates the leakage

queries of adversary A).

(9) A′ chooses j∗ ∈R {0, 1, . . . , q} (The index j∗ is
the first tampering query leading to ⊥ in the
decoding).

(10) Check the correctness of our guess for j∗:
Run the algorithm
VrfyTamp(Ω, t, h

0
, h

1
, π

0
, π

1
,Θ

0
,Θ

1
, j∗, r) and

the output of the algorithm is a True or False.
(a) If the output is False then halt the algo-

rithm and output the randomly chosen bit
b ∈R {0, 1}.

(b) If the output is True then continue.
(11) Now the sθ is given to A′ for θ ∈ {0, 1} (the

access of adversary to the leakage oracle is ter-
minated).

(12) A′ answers the ith leakage queries of A for Tur-
ing machines L

0
,L

1
with Θ

0
[i] and Θ

1
[i]. (Note

that if Θb[i] = ⊥∗ then stop the answering of
leakage queries for other steps.)

(13) A′ continues interaction with A, answering its
ith tampering query T0 ,T 1 as follows:
(a) For i < j∗, compute X ′θ = Tθ(Xθ) =

(s′θ, h
′
1−θ, π

′
0
, π′

1
)

(i) If X ′θ = Xθ, return the same∗.
(ii) Else compute

s′1−θ ← Ext(Ω, (h′1−θ, π
′
1−θ), ek)

and define

X ′1−θ = (s′1−θ, h
′
θ, π
′
0
, π′

1
);

finally, return (X ′θ, X
′
1−θ).

(b) For i ≥ j∗ return the ⊥.
(14) A outputs the bit b′ as the result of strong con-

tinuous non-malleable experiment and then A′
also outputs the same result as his/her output.

The pseudo code of algorithm CalcLeakage is
described in Algorithm 1 and its subalgorithm
SubLeakage is described in Algorithm 2.

The pseudo code of algorithm VrfyTamp is de-
scribed in Algorithm 3.

In order to complete our proof, consider these
points:

(1) Replacement of the NIZK P with (Sim1,Sim2)
is justified by the zero-knowledge property of
NIZK proof system assumed in[2].

(2) We fix the randomness of adversary A by
choosing randomness r, and then this adver-
sary will operate as a deterministic algorithm.

(3) The algorithm CalcLeakage exactly simulates
the adversary A with the randomness r in the
experiment LeakageA′,l′,θ(n). Hence we can
conclude that vectors Θ0 , Θ1 are exact results
of leakage queries. (Note that this part of proof
is similar to [2].)

(4) A′ guesses the index of tampering queries lead-
ing to ⊥ with probability 1/q.
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Algorithm 1: CalcLeakage(Ω, t, h0 , h1 , π0 , π1 , r)

1 Set i
0
← 0, i

1
← 0.

2 for i← 0 to q do
3 θ

0
[i] = ∅

4 θ
1
[i] = ∅

5 end
/* Note that Θ0 and Θ1 are global

vectors. */

/* Note that ⊥∗ is a special symbol

for indication of leakage queries

termination. */

6 Loop
7 Query the algorithm

SubLeakage(Ω, t, , h
0
, h

1
, π

0
, π

1
, 0, r) to

leakage oracle Ol
′
(s

0
) and receives the α

and set Θ0 [i0 ] = α
8 i0 = i0 + 1
9 if α = ⊥∗ then

10 Halt and return Θ
0

and Θ
1

11 end
12 Query the algorithm

SubLeakage(Ω, t, , h0 , h1 , π0 , π1 , 1, r) to
leakage oracle Ol

′
(s1) and receive the α

and set Θ
1
[i

1
] = α

13 i
1

= i
1

+ 1
14 if α = ⊥∗ then
15 Halt and return Θ

0
and Θ

1

16 end

17 EndLoop

(5) A′ answers the i < j∗ tampering queries by
using values of Xθ and X ′θ.

(6) The answer of i < j∗ tampering query is
same∗, when Xθ = X ′θ. Since the answers of
tampering queries are not ⊥ and the encoding
scheme satisfies the uniqueness property.

(7) The answer of i < j∗ tampering query is
x′ /∈ {same∗,⊥}, when Xθ 6= X ′θ and local
checks are passed. Note that the answer of
tampering query is not ⊥ and we can use the
Ext algorithm to obtain s′

0
and s′

1
.

(8) The algorithm VrfyTamp verifies the correct-
ness of our guess for index j∗. Our guess with
probability 1/q is correct and with probability
(q−1)/q is incorrect and in this case we output
a random bit.

(9) The algorithm VrfyTamp requires 2k + 1 bits
of leakage to verify the correctness of self-
destruction index. Note that the decoding of
Construction 3.1 is ⊥, when the two shares
of the codeword in our reduction decode to
different answers. Algorithm VrfyTamp checks
the equality of j∗ − 1 tampering queries and
inequality of j∗th tampering query.

Algorithm 2: SubLeakage(Ω, t, , h0 , h1 , π0 , π1 , b, r)

1 Set e← 0
2 Run the following algorithm inside of the

oracle Ol
′
(sb).

3 Run the A(Ω, t, r) and receive m
0

and m
1

4 Set the Xb = (sb, h1−b, π0 , π1)
5 Answer the ith tampering query T0 , T1 as

follows:
6 begin Answring Tampering queries:
7 compute

X ′b = Tb(Xb) = (s′b, h
′
1−b, π

′
0
, π′

1
)

8 if X ′b = Xb then
9 return same∗ to A

10 end
11 else if X ′b 6= Xb AND local check on

X ′b fails then
12 return ⊥
13 end
14 else if X ′b 6= Xb AND π′1−b 6= π1−b

then
15 return ⊥
16 end
17 else
18 Compute

s′1−b ← Ext(Ω, (h′b, π
′
b), ek) and

then return (X ′b, X
′
1−b) to A,

where X ′1−b = (s′1−b, h
′
b, π
′
0
, π′

1
)

19 end

20 end
21 Answer the ith leakage query L

0
, L

1
as

follows:
22 begin Answring leakage queries:
23 if Θ0 [i] 6= ∅ and Θ1 [i] 6= ∅ then
24 return Θ0 [i] and Θ0 [i]
25 end
26 else if Θ

b
[i] = ∅ then

27 Compute α = Tb(sb, h1−b, π0
, π

1
)

and return α
28 end
29 else if We reach to the maximum

limit of lekage queires (l) then
30 Halt and return ⊥∗
31 end

32 end

(10) If A wins then A′ also wins.

Therefore, we can conclude that:

Pr[LeakageA′,l′,θ(n)] = 1/2× (q − 1)/q

+ 1/q × Pr[CNMLRA,l,T ,q(n)].

(2)
Using Equations 1 and 2, we have
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Algorithm 3: VrfyTamp(Ω, t, h0 , h1 , π0 , π1 ,Θ0 ,Θ1 , j
∗, r)

1 Sample a hash function Ht ← H.

2 Run A(Ω, t, r) inside of the oracle Ol
′
(s0).

3 begin Answring leakage and tampering
queries:

4 Answer the leakage quires with Θ
0

and
Θ

1
.

5 Answer the tampering queries similar
to Algorithm 2.

6 Compute the hash value of a vector of
j∗ − 1 tampering queries by using Ht

and set it in η
0
.

7 Return η
0
.

8 Note that this step of algorithm
requires k bits.

9 end

10 Run A(Ω, t, r) inside of the oracle Ol
′
(s1).

11 begin Answring leakage and tampering
queries:

12 Answer the leakage quires with Θ
0

and
Θ

1
.

13 Answer the tampering queries similar
to Algorithm 2.

14 Compute the hash value of a vector of
j∗ − 1 tampering queries by using Ht

and set it in η
1
.

15 If η
0
6= η

1
halt the Algorithm 3 and

return False.
16 Compute the hash value of j∗th

tampering query by using Ht and set
it in ζ

1
.

17 Return ζ
1
.

18 Note that this step of algorithm
requires at most k bits.

19 end

20 Run A(Ω, t, r) inside of the oracle Ol
′
(s0).

21 begin Answring leakage and tampering
queries:

22 Answer the leakage quires with Θ
0

and
Θ

1
.

23 Answer the tampering queries similar
to Algorithm 2.

24 Compute the hash value of j∗th
tampering query by using Ht and set
it in ζ

0
.

25 If ζ
0
6= ζ

1
halt the Algorithm 3 and

return True.
26 If ζ0 = ζ1 halt the Algorithm 3 and

return False.
27 Note that this step of algorithm

requires 1 bit.
28 end

Pr[LeakageA′,l′,θ(n)] ≥ (q − 1)

2q
+ 1/q(1/2 + ε(n))

= 1/2 + ε/q.

Since q is a polynomial function of n, we conclude
that ε/q is a non-negligible function and this is in
contradiction to the assumption that the problem
LeakageA′,l′,θ(n) is hard.

5 Conclusion

Tamper-resilient cryptography is a method to prov-
ably protect memory and cryptographic functionali-
ties against a specific class of tampering and leakage
attacks. The non-malleable encoding schemes are key-
less cryptographic primitives for handling tampering
attacks. In this paper, we proposed a new method
of proof for the security of Construction 3.1 which
leads to a more efficient scheme than the previous one.
Our new proof shows that the FMNV scheme can
be constructed with a more effective leakage resilient
storage scheme such that the amount of leakage is
independent of the number of tampering queries and
therefore the required memory is constant and more
practical for use on tamper-proof devices.
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